🗊Презентация Плоские дефекты, двумерные наноструктуры, большеугловые границы. Поликристаллическая структура

Категория: Физика
Нажмите для полного просмотра!
Плоские дефекты, двумерные наноструктуры, большеугловые границы. Поликристаллическая структура, слайд №1Плоские дефекты, двумерные наноструктуры, большеугловые границы. Поликристаллическая структура, слайд №2Плоские дефекты, двумерные наноструктуры, большеугловые границы. Поликристаллическая структура, слайд №3Плоские дефекты, двумерные наноструктуры, большеугловые границы. Поликристаллическая структура, слайд №4Плоские дефекты, двумерные наноструктуры, большеугловые границы. Поликристаллическая структура, слайд №5Плоские дефекты, двумерные наноструктуры, большеугловые границы. Поликристаллическая структура, слайд №6Плоские дефекты, двумерные наноструктуры, большеугловые границы. Поликристаллическая структура, слайд №7Плоские дефекты, двумерные наноструктуры, большеугловые границы. Поликристаллическая структура, слайд №8Плоские дефекты, двумерные наноструктуры, большеугловые границы. Поликристаллическая структура, слайд №9Плоские дефекты, двумерные наноструктуры, большеугловые границы. Поликристаллическая структура, слайд №10Плоские дефекты, двумерные наноструктуры, большеугловые границы. Поликристаллическая структура, слайд №11Плоские дефекты, двумерные наноструктуры, большеугловые границы. Поликристаллическая структура, слайд №12Плоские дефекты, двумерные наноструктуры, большеугловые границы. Поликристаллическая структура, слайд №13Плоские дефекты, двумерные наноструктуры, большеугловые границы. Поликристаллическая структура, слайд №14Плоские дефекты, двумерные наноструктуры, большеугловые границы. Поликристаллическая структура, слайд №15Плоские дефекты, двумерные наноструктуры, большеугловые границы. Поликристаллическая структура, слайд №16Плоские дефекты, двумерные наноструктуры, большеугловые границы. Поликристаллическая структура, слайд №17Плоские дефекты, двумерные наноструктуры, большеугловые границы. Поликристаллическая структура, слайд №18Плоские дефекты, двумерные наноструктуры, большеугловые границы. Поликристаллическая структура, слайд №19

Вы можете ознакомиться и скачать презентацию на тему Плоские дефекты, двумерные наноструктуры, большеугловые границы. Поликристаллическая структура. Доклад-сообщение содержит 19 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Плоские дефекты,
двумерные наноструктуры
Большеугловые границы,
Описание слайда:
Плоские дефекты, двумерные наноструктуры Большеугловые границы,

Слайд 2





Поликристаллическая структура
Описание слайда:
Поликристаллическая структура

Слайд 3





Поликристаллическая структура
Описание слайда:
Поликристаллическая структура

Слайд 4





Поликристаллическая структура
Описание слайда:
Поликристаллическая структура

Слайд 5





Поликристаллическая структура
Описание слайда:
Поликристаллическая структура

Слайд 6





Малоугловые границы
Описание слайда:
Малоугловые границы

Слайд 7





Малоугловые границы
Описание слайда:
Малоугловые границы

Слайд 8





Большеугловые границы
К большеугловым границам относят границы раздела кристаллитов в поликристаллическом агрегате.
Можно выделить характерные признаки большеугловых границ.
Это разориентировка зерен – поворот одного кристалла относительно другого, приводящего к совпадению кристаллов, на угол Θ вокруг общей оси U .
Угол Θ - угол разориентировки зерна.
Ось U - ось разориентировки.зерна.
Вектор U выбирают единичной длины (его можно задать двумя компонентами). 
Таким образом, разориентировка задается тремя скалярными параметрами – это Θ и два параметра оси U. 
Эти три параметра задают вектор разориентировки
Θ = |Θ| U
Описание слайда:
Большеугловые границы К большеугловым границам относят границы раздела кристаллитов в поликристаллическом агрегате. Можно выделить характерные признаки большеугловых границ. Это разориентировка зерен – поворот одного кристалла относительно другого, приводящего к совпадению кристаллов, на угол Θ вокруг общей оси U . Угол Θ - угол разориентировки зерна. Ось U - ось разориентировки.зерна. Вектор U выбирают единичной длины (его можно задать двумя компонентами). Таким образом, разориентировка задается тремя скалярными параметрами – это Θ и два параметра оси U. Эти три параметра задают вектор разориентировки Θ = |Θ| U

Слайд 9





Большеугловые границы
Дислокационная структура большеугловых границ в алюминии. На рис. справа видны параллельные ряды зернограничных дислокаций. Размытость дислокационных линий свидетельствует о расщеплении полных дислокаций в большеугловой границе и превращении их в частичные (неполные)  дислокации.
Описание слайда:
Большеугловые границы Дислокационная структура большеугловых границ в алюминии. На рис. справа видны параллельные ряды зернограничных дислокаций. Размытость дислокационных линий свидетельствует о расщеплении полных дислокаций в большеугловой границе и превращении их в частичные (неполные) дислокации.

Слайд 10





Большеугловые границы
Описание слайда:
Большеугловые границы

Слайд 11





Большеугловые границы
Описание слайда:
Большеугловые границы

Слайд 12





Микроскопические параметры границы 
Границы зерен с одинаковыми макроскопическими параметрами, но различными микроскопическими параметрами. 
Для таких границ разработана специальная классификация, которая характеризуется обратной плотностью узлов совпадения, или в обозначениях - ∑= n. 
Например, если n=3, то ∑3 означает, что третий узел в решетках является общим. 
Таким образом, чем больше число под знаком ∑, тем меньше плотность узлов совпадения. 
Если ∑3, то граница имеет двойниковую ориентацию.
Описание слайда:
Микроскопические параметры границы Границы зерен с одинаковыми макроскопическими параметрами, но различными микроскопическими параметрами. Для таких границ разработана специальная классификация, которая характеризуется обратной плотностью узлов совпадения, или в обозначениях - ∑= n. Например, если n=3, то ∑3 означает, что третий узел в решетках является общим. Таким образом, чем больше число под знаком ∑, тем меньше плотность узлов совпадения. Если ∑3, то граница имеет двойниковую ориентацию.

Слайд 13





Структура совершенных границ зерен 
Наложение двух примитивных кубических решеток, разориентированных на 36,86° вокруг оси [001].
Можно выделить:
1 - решетку совпадающих узлов (РСУ), 
2 - 0-решетку,
3 - полную решетку наложения (ПРН), 
4 - решетка зернограничных сдвигов (РЗС).
На рис. Σ5
Описание слайда:
Структура совершенных границ зерен Наложение двух примитивных кубических решеток, разориентированных на 36,86° вокруг оси [001]. Можно выделить: 1 - решетку совпадающих узлов (РСУ), 2 - 0-решетку, 3 - полную решетку наложения (ПРН), 4 - решетка зернограничных сдвигов (РЗС). На рис. Σ5

Слайд 14





Специальные границы 
Зависимость энергии границ зерен в алюминии, разориентированных вокруг оси [011], от угла разориентировки θ. Здесь γ – зернограничная энергия, γ0 – энергия свободной поверхности.
Решетка РСУ с высокой плотностью совпадающих узлов (малой величиной ∑) образуется только при некоторых, так называемых «специальных», разориентировках зерен. 
Границы с такими разориентировками называют специальными границами.
Описание слайда:
Специальные границы Зависимость энергии границ зерен в алюминии, разориентированных вокруг оси [011], от угла разориентировки θ. Здесь γ – зернограничная энергия, γ0 – энергия свободной поверхности. Решетка РСУ с высокой плотностью совпадающих узлов (малой величиной ∑) образуется только при некоторых, так называемых «специальных», разориентировках зерен. Границы с такими разориентировками называют специальными границами.

Слайд 15





Большеугловые границы
Описание слайда:
Большеугловые границы

Слайд 16





Большеугловые границы
Описание слайда:
Большеугловые границы

Слайд 17





Большеугловые границы
Описание слайда:
Большеугловые границы

Слайд 18





Большеугловые границы
Описание слайда:
Большеугловые границы

Слайд 19





Большеугловые границы
Описание слайда:
Большеугловые границы



Похожие презентации
Mypresentation.ru
Загрузить презентацию