🗊Скачать презентацию Большой андронный коллайдер

Категория: Физика
Нажмите для полного просмотра!
Скачать презентацию Большой андронный коллайдер , слайд №1Скачать презентацию Большой андронный коллайдер , слайд №2Скачать презентацию Большой андронный коллайдер , слайд №3Скачать презентацию Большой андронный коллайдер , слайд №4Скачать презентацию Большой андронный коллайдер , слайд №5Скачать презентацию Большой андронный коллайдер , слайд №6Скачать презентацию Большой андронный коллайдер , слайд №7Скачать презентацию Большой андронный коллайдер , слайд №8


Слайды и текст этой презентации


Слайд 1





Белорусский национальный технический университет
Большой андронный коллайдер
Описание слайда:
Белорусский национальный технический университет Большой андронный коллайдер

Слайд 2





     Идея проекта Большого адронного коллайдера родилась в 1984 году и была официально одобрена десятью годами позже. Его строительство началось в 2001 году, после окончания работы предыдущего ускорителя — Большого электрон-позитронного коллайдера.
     Идея проекта Большого адронного коллайдера родилась в 1984 году и была официально одобрена десятью годами позже. Его строительство началось в 2001 году, после окончания работы предыдущего ускорителя — Большого электрон-позитронного коллайдера.
Описание слайда:
Идея проекта Большого адронного коллайдера родилась в 1984 году и была официально одобрена десятью годами позже. Его строительство началось в 2001 году, после окончания работы предыдущего ускорителя — Большого электрон-позитронного коллайдера. Идея проекта Большого адронного коллайдера родилась в 1984 году и была официально одобрена десятью годами позже. Его строительство началось в 2001 году, после окончания работы предыдущего ускорителя — Большого электрон-позитронного коллайдера.

Слайд 3





В ускорителе предполагается сталкивать протоны с суммарной энергией 14 ТэВ в системе центра масс налетающих частиц, а также ядра свинца с энергией 5,5 ГэВ на каждую пару сталкивающихся нуклонов. 
      Таким образом, БАК будет самым высокоэнергичным ускорителем элементарных частиц в мире, на порядок превосходя по энергии своих ближайших конкурентов — протон-антипротонный коллайдер Тэватрон, который в настоящее время работает в Национальной ускорительной лаборатории им. Энрико Ферми (США), и релятивистский коллайдер тяжёлых ионов RHIC, работающий в Брукхейвенской лаборатории (США).
Описание слайда:
В ускорителе предполагается сталкивать протоны с суммарной энергией 14 ТэВ в системе центра масс налетающих частиц, а также ядра свинца с энергией 5,5 ГэВ на каждую пару сталкивающихся нуклонов. Таким образом, БАК будет самым высокоэнергичным ускорителем элементарных частиц в мире, на порядок превосходя по энергии своих ближайших конкурентов — протон-антипротонный коллайдер Тэватрон, который в настоящее время работает в Национальной ускорительной лаборатории им. Энрико Ферми (США), и релятивистский коллайдер тяжёлых ионов RHIC, работающий в Брукхейвенской лаборатории (США).

Слайд 4





      Ускоритель расположен в том же туннеле, который прежде занимал Большой электрон-позитронный коллайдер. Туннель с длиной окружности 26,7 км проложен на глубине около ста метров под землёй на территории Франции и Швейцарии. Для удержания и коррекции протонных пучков используются 1624 сверхпроводящих магнита, общая длина которых превышает 22 км. Последний из них был установлен в туннеле 27 ноября 2006 года. Магниты будут работать при температуре 1,9 K (−271 °C). Строительство специальной криогенной линии для охлаждения магнитов закончено 19 ноября 2006 года.
      Ускоритель расположен в том же туннеле, который прежде занимал Большой электрон-позитронный коллайдер. Туннель с длиной окружности 26,7 км проложен на глубине около ста метров под землёй на территории Франции и Швейцарии. Для удержания и коррекции протонных пучков используются 1624 сверхпроводящих магнита, общая длина которых превышает 22 км. Последний из них был установлен в туннеле 27 ноября 2006 года. Магниты будут работать при температуре 1,9 K (−271 °C). Строительство специальной криогенной линии для охлаждения магнитов закончено 19 ноября 2006 года.
Описание слайда:
Ускоритель расположен в том же туннеле, который прежде занимал Большой электрон-позитронный коллайдер. Туннель с длиной окружности 26,7 км проложен на глубине около ста метров под землёй на территории Франции и Швейцарии. Для удержания и коррекции протонных пучков используются 1624 сверхпроводящих магнита, общая длина которых превышает 22 км. Последний из них был установлен в туннеле 27 ноября 2006 года. Магниты будут работать при температуре 1,9 K (−271 °C). Строительство специальной криогенной линии для охлаждения магнитов закончено 19 ноября 2006 года. Ускоритель расположен в том же туннеле, который прежде занимал Большой электрон-позитронный коллайдер. Туннель с длиной окружности 26,7 км проложен на глубине около ста метров под землёй на территории Франции и Швейцарии. Для удержания и коррекции протонных пучков используются 1624 сверхпроводящих магнита, общая длина которых превышает 22 км. Последний из них был установлен в туннеле 27 ноября 2006 года. Магниты будут работать при температуре 1,9 K (−271 °C). Строительство специальной криогенной линии для охлаждения магнитов закончено 19 ноября 2006 года.

Слайд 5





     Скорость частиц в БАК на встречных пучках близка к скорости света в вакууме. Разгон частиц до таких больших скоростей достигается в несколько этапов. На первом этапе низкоэнергетичные линейные ускорители Linac 2 и Linac 3 производят инжекцию протонов и ионов свинца для дальнейшего ускорения. Затем частицы попадают в PS-бустер и далее в сам PS (протонный синхротрон), приобретая энергию в 28 ГэВ. 
     Скорость частиц в БАК на встречных пучках близка к скорости света в вакууме. Разгон частиц до таких больших скоростей достигается в несколько этапов. На первом этапе низкоэнергетичные линейные ускорители Linac 2 и Linac 3 производят инжекцию протонов и ионов свинца для дальнейшего ускорения. Затем частицы попадают в PS-бустер и далее в сам PS (протонный синхротрон), приобретая энергию в 28 ГэВ.
Описание слайда:
Скорость частиц в БАК на встречных пучках близка к скорости света в вакууме. Разгон частиц до таких больших скоростей достигается в несколько этапов. На первом этапе низкоэнергетичные линейные ускорители Linac 2 и Linac 3 производят инжекцию протонов и ионов свинца для дальнейшего ускорения. Затем частицы попадают в PS-бустер и далее в сам PS (протонный синхротрон), приобретая энергию в 28 ГэВ. Скорость частиц в БАК на встречных пучках близка к скорости света в вакууме. Разгон частиц до таких больших скоростей достигается в несколько этапов. На первом этапе низкоэнергетичные линейные ускорители Linac 2 и Linac 3 производят инжекцию протонов и ионов свинца для дальнейшего ускорения. Затем частицы попадают в PS-бустер и далее в сам PS (протонный синхротрон), приобретая энергию в 28 ГэВ.

Слайд 6






Скорость протовнов: 99,9999991% от скорости света 
Число протонов в сгустке: до 100 млрд (1011) 
Число сгустков: до 2808 
Число прохождения пучками протонов зон детекторов: до 31 млн в секунду, в 4 зонах 
Число столкновений частиц при пересечении: до 20 
Оъем данных на одно столкновение: около 1,5 МБ 
Число частиц Хиггса: 1 каждые 2,5 секунды (при полной интенсивности пучка и согласно определенным предположениям о свойствах частиц Хиггса)
Описание слайда:
Скорость протовнов: 99,9999991% от скорости света Число протонов в сгустке: до 100 млрд (1011) Число сгустков: до 2808 Число прохождения пучками протонов зон детекторов: до 31 млн в секунду, в 4 зонах Число столкновений частиц при пересечении: до 20 Оъем данных на одно столкновение: около 1,5 МБ Число частиц Хиггса: 1 каждые 2,5 секунды (при полной интенсивности пучка и согласно определенным предположениям о свойствах частиц Хиггса)

Слайд 7





     В этой связи наиболее часто упоминается теоретическая возможность появления в коллайдере микроскопических черных дыр, а также теоретическая возможность образования сгустков антиматерии и магнитных монополей с последующей цепной реакцией захвата окружающей материи. 
     В этой связи наиболее часто упоминается теоретическая возможность появления в коллайдере микроскопических черных дыр, а также теоретическая возможность образования сгустков антиматерии и магнитных монополей с последующей цепной реакцией захвата окружающей материи.
Описание слайда:
В этой связи наиболее часто упоминается теоретическая возможность появления в коллайдере микроскопических черных дыр, а также теоретическая возможность образования сгустков антиматерии и магнитных монополей с последующей цепной реакцией захвата окружающей материи. В этой связи наиболее часто упоминается теоретическая возможность появления в коллайдере микроскопических черных дыр, а также теоретическая возможность образования сгустков антиматерии и магнитных монополей с последующей цепной реакцией захвата окружающей материи.

Слайд 8





To be continued…
To be continued…
Описание слайда:
To be continued… To be continued…


Презентацию на тему Большой андронный коллайдер можно скачать бесплатно ниже:

Похожие презентации
Mypresentation.ru
Загрузить презентацию