🗊Презентация на тему Свехпроводимость

Категория: Физика
Нажмите для полного просмотра!
Презентация на тему Свехпроводимость , слайд №1Презентация на тему Свехпроводимость , слайд №2Презентация на тему Свехпроводимость , слайд №3Презентация на тему Свехпроводимость , слайд №4Презентация на тему Свехпроводимость , слайд №5Презентация на тему Свехпроводимость , слайд №6Презентация на тему Свехпроводимость , слайд №7Презентация на тему Свехпроводимость , слайд №8Презентация на тему Свехпроводимость , слайд №9Презентация на тему Свехпроводимость , слайд №10Презентация на тему Свехпроводимость , слайд №11Презентация на тему Свехпроводимость , слайд №12Презентация на тему Свехпроводимость , слайд №13Презентация на тему Свехпроводимость , слайд №14Презентация на тему Свехпроводимость , слайд №15

Вы можете ознакомиться и скачать Презентация на тему Свехпроводимость . Презентация содержит 15 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Департамент образования гор. Москвы
Северное окружное управление образования
государственное образовательное учреждение
Г и м н а з и я  
№ 201
Описание слайда:
Департамент образования гор. Москвы Северное окружное управление образования государственное образовательное учреждение Г и м н а з и я № 201

Слайд 2





Сверхпроводимость
Сверхпроводимость
Описание слайда:
Сверхпроводимость Сверхпроводимость

Слайд 3





		Сверхпроводимость, свойство многих проводников, состоящее в том, что их электрическое сопротивление скачком падает до нуля при охлаждении ниже определённой критической температуры Тк, характерной для данного материала. С. обнаружена у более чем 25 металлических элементов, у большого числа сплавов и интерметаллических соединений, а также у некоторых полупроводников. 
		Сверхпроводимость, свойство многих проводников, состоящее в том, что их электрическое сопротивление скачком падает до нуля при охлаждении ниже определённой критической температуры Тк, характерной для данного материала. С. обнаружена у более чем 25 металлических элементов, у большого числа сплавов и интерметаллических соединений, а также у некоторых полупроводников.
Описание слайда:
Сверхпроводимость, свойство многих проводников, состоящее в том, что их электрическое сопротивление скачком падает до нуля при охлаждении ниже определённой критической температуры Тк, характерной для данного материала. С. обнаружена у более чем 25 металлических элементов, у большого числа сплавов и интерметаллических соединений, а также у некоторых полупроводников. Сверхпроводимость, свойство многих проводников, состоящее в том, что их электрическое сопротивление скачком падает до нуля при охлаждении ниже определённой критической температуры Тк, характерной для данного материала. С. обнаружена у более чем 25 металлических элементов, у большого числа сплавов и интерметаллических соединений, а также у некоторых полупроводников.

Слайд 4





	В 1911 году голландский физик  Камерлинг-Оннес 
	В 1911 году голландский физик  Камерлинг-Оннес 
обнаружил, что при охлаждении
ртути в жидком гелии её
 сопротивление сначала
 меняется постепенно, а затем 
при температуре  4,2 К резко падает до нуля.
Описание слайда:
В 1911 году голландский физик  Камерлинг-Оннес В 1911 году голландский физик  Камерлинг-Оннес обнаружил, что при охлаждении ртути в жидком гелии её сопротивление сначала меняется постепенно, а затем при температуре 4,2 К резко падает до нуля.

Слайд 5





		Однако нулевое сопротивление — не единственная отличительная черта сверхпроводимости. Ещё из теории Друде известно, что проводимость металлов увеличивается с понижением температуры, то есть электрическое сопротивление стремится к нулю. 
		Однако нулевое сопротивление — не единственная отличительная черта сверхпроводимости. Ещё из теории Друде известно, что проводимость металлов увеличивается с понижением температуры, то есть электрическое сопротивление стремится к нулю.
Описание слайда:
Однако нулевое сопротивление — не единственная отличительная черта сверхпроводимости. Ещё из теории Друде известно, что проводимость металлов увеличивается с понижением температуры, то есть электрическое сопротивление стремится к нулю. Однако нулевое сопротивление — не единственная отличительная черта сверхпроводимости. Ещё из теории Друде известно, что проводимость металлов увеличивается с понижением температуры, то есть электрическое сопротивление стремится к нулю.

Слайд 6





		Одним из главных отличий сверхпроводников от идеальных проводников является эффект Мейснера, открытый в 1933 году, т.е. полное вытеснение  магнитного поля из материала при переходе в  сверхпроводящее состояние. Впервые явление наблюдалось в 1933 году немецкими физиками Мейснером и Оксенфельдом
		Одним из главных отличий сверхпроводников от идеальных проводников является эффект Мейснера, открытый в 1933 году, т.е. полное вытеснение  магнитного поля из материала при переходе в  сверхпроводящее состояние. Впервые явление наблюдалось в 1933 году немецкими физиками Мейснером и Оксенфельдом
Описание слайда:
Одним из главных отличий сверхпроводников от идеальных проводников является эффект Мейснера, открытый в 1933 году, т.е. полное вытеснение  магнитного поля из материала при переходе в сверхпроводящее состояние. Впервые явление наблюдалось в 1933 году немецкими физиками Мейснером и Оксенфельдом Одним из главных отличий сверхпроводников от идеальных проводников является эффект Мейснера, открытый в 1933 году, т.е. полное вытеснение  магнитного поля из материала при переходе в сверхпроводящее состояние. Впервые явление наблюдалось в 1933 году немецкими физиками Мейснером и Оксенфельдом

Слайд 7





	Гроб Мухаммеда — опыт, демонстрирующий этот эффект в сверхпроводниках.
По преданию, гроб с телом пророка Магомета висел в пространстве без всякой поддержки, поэтому этот опыт называют экспериментом с «магометовым гробом».
Описание слайда:
Гроб Мухаммеда — опыт, демонстрирующий этот эффект в сверхпроводниках. По преданию, гроб с телом пророка Магомета висел в пространстве без всякой поддержки, поэтому этот опыт называют экспериментом с «магометовым гробом».

Слайд 8





	Динамическая сверхпроводимость
	Динамическая сверхпроводимость
Описание слайда:
Динамическая сверхпроводимость Динамическая сверхпроводимость

Слайд 9





		Отталкиваясь от неподвижного сверхпроводника, магнит всплывает сам и продолжает парить до тех пор, пока внешние условия не выведут сверхпроводник из сверхпроводящей фазы. В результате этого эффекта магнит, приближающийся к сверхпроводнику, «увидит» магнит обратной полярности точно такого же размера, что и вызывает левитацию.
		Отталкиваясь от неподвижного сверхпроводника, магнит всплывает сам и продолжает парить до тех пор, пока внешние условия не выведут сверхпроводник из сверхпроводящей фазы. В результате этого эффекта магнит, приближающийся к сверхпроводнику, «увидит» магнит обратной полярности точно такого же размера, что и вызывает левитацию.
Описание слайда:
Отталкиваясь от неподвижного сверхпроводника, магнит всплывает сам и продолжает парить до тех пор, пока внешние условия не выведут сверхпроводник из сверхпроводящей фазы. В результате этого эффекта магнит, приближающийся к сверхпроводнику, «увидит» магнит обратной полярности точно такого же размера, что и вызывает левитацию. Отталкиваясь от неподвижного сверхпроводника, магнит всплывает сам и продолжает парить до тех пор, пока внешние условия не выведут сверхпроводник из сверхпроводящей фазы. В результате этого эффекта магнит, приближающийся к сверхпроводнику, «увидит» магнит обратной полярности точно такого же размера, что и вызывает левитацию.

Слайд 10





	Рекордно высоким значением Тк (около 23 К) обладает соединение Nb3Ge.
	Рекордно высоким значением Тк (около 23 К) обладает соединение Nb3Ge.
Описание слайда:
Рекордно высоким значением Тк (около 23 К) обладает соединение Nb3Ge. Рекордно высоким значением Тк (около 23 К) обладает соединение Nb3Ge.

Слайд 11





		В 1962 году учёными Литтлом и Парксом было обнаружено, что температура перехода тонкостенного цилиндра малого радиуса в сверхпроводящее состояние периодически (с периодом равным кванту потока) зависит от величины  магнитного потока. Этот эффект является одним из проявлений макроскопической квантовой природы сверхпроводимости
		В 1962 году учёными Литтлом и Парксом было обнаружено, что температура перехода тонкостенного цилиндра малого радиуса в сверхпроводящее состояние периодически (с периодом равным кванту потока) зависит от величины  магнитного потока. Этот эффект является одним из проявлений макроскопической квантовой природы сверхпроводимости
Описание слайда:
В 1962 году учёными Литтлом и Парксом было обнаружено, что температура перехода тонкостенного цилиндра малого радиуса в сверхпроводящее состояние периодически (с периодом равным кванту потока) зависит от величины  магнитного потока. Этот эффект является одним из проявлений макроскопической квантовой природы сверхпроводимости В 1962 году учёными Литтлом и Парксом было обнаружено, что температура перехода тонкостенного цилиндра малого радиуса в сверхпроводящее состояние периодически (с периодом равным кванту потока) зависит от величины  магнитного потока. Этот эффект является одним из проявлений макроскопической квантовой природы сверхпроводимости

Слайд 12





		Наиболее интересные возможные промышленные применения сверхпроводимости связаны с генерированием, передачей и использованием электроэнергии.
		Наиболее интересные возможные промышленные применения сверхпроводимости связаны с генерированием, передачей и использованием электроэнергии.
Описание слайда:
Наиболее интересные возможные промышленные применения сверхпроводимости связаны с генерированием, передачей и использованием электроэнергии. Наиболее интересные возможные промышленные применения сверхпроводимости связаны с генерированием, передачей и использованием электроэнергии.

Слайд 13





		Инженеры давно уже задумывались о том, как можно было бы использовать огромные магнитные поля, создаваемые с помощью сверхпроводников, для магнитной подвески поезда (магнитной левитации). За счет сил взаимного отталкивания между движущимся магнитом и током, индуцируемым в направляющем проводнике, поезд двигался бы плавно, без шума и трения и был бы способен развивать очень большие скорости. Экспериментальные поезда на магнитной подвеске в Японии и Германии достигли скоростей, близких к 300 км/ч.
		Инженеры давно уже задумывались о том, как можно было бы использовать огромные магнитные поля, создаваемые с помощью сверхпроводников, для магнитной подвески поезда (магнитной левитации). За счет сил взаимного отталкивания между движущимся магнитом и током, индуцируемым в направляющем проводнике, поезд двигался бы плавно, без шума и трения и был бы способен развивать очень большие скорости. Экспериментальные поезда на магнитной подвеске в Японии и Германии достигли скоростей, близких к 300 км/ч.
Описание слайда:
Инженеры давно уже задумывались о том, как можно было бы использовать огромные магнитные поля, создаваемые с помощью сверхпроводников, для магнитной подвески поезда (магнитной левитации). За счет сил взаимного отталкивания между движущимся магнитом и током, индуцируемым в направляющем проводнике, поезд двигался бы плавно, без шума и трения и был бы способен развивать очень большие скорости. Экспериментальные поезда на магнитной подвеске в Японии и Германии достигли скоростей, близких к 300 км/ч. Инженеры давно уже задумывались о том, как можно было бы использовать огромные магнитные поля, создаваемые с помощью сверхпроводников, для магнитной подвески поезда (магнитной левитации). За счет сил взаимного отталкивания между движущимся магнитом и током, индуцируемым в направляющем проводнике, поезд двигался бы плавно, без шума и трения и был бы способен развивать очень большие скорости. Экспериментальные поезда на магнитной подвеске в Японии и Германии достигли скоростей, близких к 300 км/ч.

Слайд 14





               Сверхпроводимость
Академик В.Л. Гинзбург, нобелевский лауреат за работы по сверхпроводимости
Описание слайда:
Сверхпроводимость Академик В.Л. Гинзбург, нобелевский лауреат за работы по сверхпроводимости

Слайд 15





		Еще одно возможное применение сверхпроводников – в мощных генераторах тока и электродвигателях малых размеров. 
		Еще одно возможное применение сверхпроводников – в мощных генераторах тока и электродвигателях малых размеров. 
Описание слайда:
Еще одно возможное применение сверхпроводников – в мощных генераторах тока и электродвигателях малых размеров.  Еще одно возможное применение сверхпроводников – в мощных генераторах тока и электродвигателях малых размеров. 



Похожие презентации
Mypresentation.ru
Загрузить презентацию