🗊Презентация по физике "Измерение высоты здания разными способами" - скачать

Категория: Физика
Нажмите для полного просмотра!
Презентация по физике "Измерение высоты здания разными способами" - скачать , слайд №1Презентация по физике "Измерение высоты здания разными способами" - скачать , слайд №2Презентация по физике "Измерение высоты здания разными способами" - скачать , слайд №3Презентация по физике "Измерение высоты здания разными способами" - скачать , слайд №4Презентация по физике "Измерение высоты здания разными способами" - скачать , слайд №5Презентация по физике "Измерение высоты здания разными способами" - скачать , слайд №6Презентация по физике "Измерение высоты здания разными способами" - скачать , слайд №7Презентация по физике "Измерение высоты здания разными способами" - скачать , слайд №8Презентация по физике "Измерение высоты здания разными способами" - скачать , слайд №9Презентация по физике "Измерение высоты здания разными способами" - скачать , слайд №10

Вы можете ознакомиться и скачать Презентация по физике "Измерение высоты здания разными способами" - скачать . Презентация содержит 10 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1


Презентация по физике "Измерение высоты здания разными способами" - скачать , слайд №1
Описание слайда:

Слайд 2


Презентация по физике "Измерение высоты здания разными способами" - скачать , слайд №2
Описание слайда:

Слайд 3





Цель работы:
Измерение высоты школьного здания.

«Время от времени следует производить 
самые дикие эксперименты. Из них почти 
никогда ничего не выходит, но если они 
удаются, то результат бывает потрясающим»
Эразм Дарвин
Описание слайда:
Цель работы: Измерение высоты школьного здания. «Время от времени следует производить самые дикие эксперименты. Из них почти никогда ничего не выходит, но если они удаются, то результат бывает потрясающим» Эразм Дарвин

Слайд 4





Встанем перед школой в полдень (чем лучше будет определён момент полудня, тем точнее окажется эксперимент). Солнце во всех экспериментах считаем точечным источником света. Измерим длину тени, которую отбрасывает школа, обозначим эту величину буквой h, h=6,57 м. (на рис., это отрезок BC.)
Встанем перед школой в полдень (чем лучше будет определён момент полудня, тем точнее окажется эксперимент). Солнце во всех экспериментах считаем точечным источником света. Измерим длину тени, которую отбрасывает школа, обозначим эту величину буквой h, h=6,57 м. (на рис., это отрезок BC.)
 
 Установим рейку длины L (L=1 м) перпендикулярны земле (в дальнейшем будем пользоваться этим фактом, не оговаривая его специально), а угол падения солнечных лучей одинаков, треугольники ABC и DEF на рисунках подобны по двум углам. Отсюда можно составить пропорцию:
 
 

где H – измеряемая величина, т.е. высота школьного здания.
Теперь легко вывести высоту школьного здания:
Подставим в предыдущее выражение численные значения:
 
   
  Ответ: H = 9,81 м.
 
Описание слайда:
Встанем перед школой в полдень (чем лучше будет определён момент полудня, тем точнее окажется эксперимент). Солнце во всех экспериментах считаем точечным источником света. Измерим длину тени, которую отбрасывает школа, обозначим эту величину буквой h, h=6,57 м. (на рис., это отрезок BC.) Встанем перед школой в полдень (чем лучше будет определён момент полудня, тем точнее окажется эксперимент). Солнце во всех экспериментах считаем точечным источником света. Измерим длину тени, которую отбрасывает школа, обозначим эту величину буквой h, h=6,57 м. (на рис., это отрезок BC.)    Установим рейку длины L (L=1 м) перпендикулярны земле (в дальнейшем будем пользоваться этим фактом, не оговаривая его специально), а угол падения солнечных лучей одинаков, треугольники ABC и DEF на рисунках подобны по двум углам. Отсюда можно составить пропорцию: где H – измеряемая величина, т.е. высота школьного здания. Теперь легко вывести высоту школьного здания: Подставим в предыдущее выражение численные значения:   Ответ: H = 9,81 м.  

Слайд 5





Начнем эксперимент ровно в полдень. Измерения лучше проводить в самый длительный световой день, 22 июня, когда Солнце поднимается над горизонтом на максимальный для данной широты угол. Наш славный город Елец находится на 52° северной широты, значит, в нашем случае α=52°, где α – это угол  ABC на  рисунке.
Начнем эксперимент ровно в полдень. Измерения лучше проводить в самый длительный световой день, 22 июня, когда Солнце поднимается над горизонтом на максимальный для данной широты угол. Наш славный город Елец находится на 52° северной широты, значит, в нашем случае α=52°, где α – это угол  ABC на  рисунке.
 
Измерим длину тени, отбрасываемой школой (на рис. 5 – это отрезок BC длины h, где h = 7,48 м). В прямоугольном треугольнике ACB: 
H = h * tg α.
Подставим численные значения в данную формулу, получим:
H = 7,48 м * tg 52° = 9,73 м.
 
Ответ: 9,73 м.
 
Описание слайда:
Начнем эксперимент ровно в полдень. Измерения лучше проводить в самый длительный световой день, 22 июня, когда Солнце поднимается над горизонтом на максимальный для данной широты угол. Наш славный город Елец находится на 52° северной широты, значит, в нашем случае α=52°, где α – это угол ABC на рисунке. Начнем эксперимент ровно в полдень. Измерения лучше проводить в самый длительный световой день, 22 июня, когда Солнце поднимается над горизонтом на максимальный для данной широты угол. Наш славный город Елец находится на 52° северной широты, значит, в нашем случае α=52°, где α – это угол ABC на рисунке.   Измерим длину тени, отбрасываемой школой (на рис. 5 – это отрезок BC длины h, где h = 7,48 м). В прямоугольном треугольнике ACB: H = h * tg α. Подставим численные значения в данную формулу, получим: H = 7,48 м * tg 52° = 9,73 м.   Ответ: 9,73 м.  

Слайд 6





Прикрепим к нити с одного конца груз и закинем нить так, чтобы она концом с камушком намоталась на поручень защитного ограждения на крыше. К свободному концу прикрепим сферический груз в таком месте, чтобы при его отпускании он висел близко к земле. Получим, таким образом, математический маятник. 
Прикрепим к нити с одного конца груз и закинем нить так, чтобы она концом с камушком намоталась на поручень защитного ограждения на крыше. К свободному концу прикрепим сферический груз в таком месте, чтобы при его отпускании он висел близко к земле. Получим, таким образом, математический маятник. 
  
Выведем маятник из положения равновесия, отклонив груз на малый угол относительно вертикали, проходящей через точку подвеса.
Замерим время t, необходимое для определённого числа колебаний (обозначим это число колебаний через n). Пусть n = 50, t = 312,53 c. Найдём период колебаний по формуле:
Теперь воспользуемся формулой периода колебаний математического маятника:
Исходя из формулы 1 и 2, вычислим значение неизвестной  :
 
Очевидно, что H=l, где H – высота школьного здания. (Хотя мы и намотали нить на выступ защитного ограждения, но точкой подвеса нужно считать место соприкосновения нити с краем крыши, т.е. отрезок нити AB неподвижен.) Длина нити математического маятника l=BC. 
Наконец, приходим к формуле:
Подставим численные значения всех вошедших в последнюю формулу величин, принимаю g = 9,8 м/с2:
 
 
 
    Ответ: H = 9,71 м.               
 
Описание слайда:
Прикрепим к нити с одного конца груз и закинем нить так, чтобы она концом с камушком намоталась на поручень защитного ограждения на крыше. К свободному концу прикрепим сферический груз в таком месте, чтобы при его отпускании он висел близко к земле. Получим, таким образом, математический маятник. Прикрепим к нити с одного конца груз и закинем нить так, чтобы она концом с камушком намоталась на поручень защитного ограждения на крыше. К свободному концу прикрепим сферический груз в таком месте, чтобы при его отпускании он висел близко к земле. Получим, таким образом, математический маятник.    Выведем маятник из положения равновесия, отклонив груз на малый угол относительно вертикали, проходящей через точку подвеса. Замерим время t, необходимое для определённого числа колебаний (обозначим это число колебаний через n). Пусть n = 50, t = 312,53 c. Найдём период колебаний по формуле: Теперь воспользуемся формулой периода колебаний математического маятника: Исходя из формулы 1 и 2, вычислим значение неизвестной :   Очевидно, что H=l, где H – высота школьного здания. (Хотя мы и намотали нить на выступ защитного ограждения, но точкой подвеса нужно считать место соприкосновения нити с краем крыши, т.е. отрезок нити AB неподвижен.) Длина нити математического маятника l=BC. Наконец, приходим к формуле: Подставим численные значения всех вошедших в последнюю формулу величин, принимаю g = 9,8 м/с2:     Ответ: H = 9,71 м.  

Слайд 7





Установим рейку перпендикулярно земле на расстоянии S от стены школы. Глаз наблюдателя расположим в точке А.
Установим рейку перпендикулярно земле на расстоянии S от стены школы. Глаз наблюдателя расположим в точке А.
Направим рейку так, чтобы один конец соприкасался с глазом, а другой был направлен на верхний край стены. Очевидно, что < BAC = < DBE, обозначим их α. 
Очевидно, высота школы равна:  
Измерим с помощью транспортира угол α, α = 30°
Измерим расстояние S с помощью рулетки. S = 14,72м
Подставим численные значения:
Ответ: H = 9,84м.
Описание слайда:
Установим рейку перпендикулярно земле на расстоянии S от стены школы. Глаз наблюдателя расположим в точке А. Установим рейку перпендикулярно земле на расстоянии S от стены школы. Глаз наблюдателя расположим в точке А. Направим рейку так, чтобы один конец соприкасался с глазом, а другой был направлен на верхний край стены. Очевидно, что < BAC = < DBE, обозначим их α. Очевидно, высота школы равна: Измерим с помощью транспортира угол α, α = 30° Измерим расстояние S с помощью рулетки. S = 14,72м Подставим численные значения: Ответ: H = 9,84м.

Слайд 8


Презентация по физике "Измерение высоты здания разными способами" - скачать , слайд №8
Описание слайда:

Слайд 9





Найдём относительную погрешность:
Найдём относительную погрешность:
 
 
Где Hср – среднее значение высоты школы, а H max и H min – максимальное и минимальное значения, полученные экспериментально. Подставляя численные значения, имеем:
 
 
Таким образом, относительная погрешность составляет ≈ 2 %.
Описание слайда:
Найдём относительную погрешность: Найдём относительную погрешность:     Где Hср – среднее значение высоты школы, а H max и H min – максимальное и минимальное значения, полученные экспериментально. Подставляя численные значения, имеем:     Таким образом, относительная погрешность составляет ≈ 2 %.

Слайд 10





Часто, в несложных жизненных ситуациях мы не можем решить простую задачу. В своей работе я привел примеры того, как можно измерить высоту здания путем физических явлений. Всего я использовал 10 способов, однако их гораздо больше, что смог доказать вам рассказом про необыкновенную историю, с которой вы можете ознакомиться в полной версии работ. В обобщении был составлен график, на котором можно понять наиболее точный способ измерения, и наиболее далекий от идеала.
Часто, в несложных жизненных ситуациях мы не можем решить простую задачу. В своей работе я привел примеры того, как можно измерить высоту здания путем физических явлений. Всего я использовал 10 способов, однако их гораздо больше, что смог доказать вам рассказом про необыкновенную историю, с которой вы можете ознакомиться в полной версии работ. В обобщении был составлен график, на котором можно понять наиболее точный способ измерения, и наиболее далекий от идеала.
 
 Приведенные в приложении 10 способов, подобраны так, чтобы можно было измерить высоту здания, не имея при себе никакого сверхгениального оборудования. Данная работа может служить хорошим пособием для подготовки к выпускным экзаменам. 
 
Описание слайда:
Часто, в несложных жизненных ситуациях мы не можем решить простую задачу. В своей работе я привел примеры того, как можно измерить высоту здания путем физических явлений. Всего я использовал 10 способов, однако их гораздо больше, что смог доказать вам рассказом про необыкновенную историю, с которой вы можете ознакомиться в полной версии работ. В обобщении был составлен график, на котором можно понять наиболее точный способ измерения, и наиболее далекий от идеала. Часто, в несложных жизненных ситуациях мы не можем решить простую задачу. В своей работе я привел примеры того, как можно измерить высоту здания путем физических явлений. Всего я использовал 10 способов, однако их гораздо больше, что смог доказать вам рассказом про необыкновенную историю, с которой вы можете ознакомиться в полной версии работ. В обобщении был составлен график, на котором можно понять наиболее точный способ измерения, и наиболее далекий от идеала. Приведенные в приложении 10 способов, подобраны так, чтобы можно было измерить высоту здания, не имея при себе никакого сверхгениального оборудования. Данная работа может служить хорошим пособием для подготовки к выпускным экзаменам.  



Похожие презентации
Mypresentation.ru
Загрузить презентацию