🗊Презентация по физике "Янтарная сказка о статическом электричестве" - скачать бесплатно

Категория: Физика
Нажмите для полного просмотра!
Презентация по физике "Янтарная сказка о статическом электричестве" - скачать бесплатно, слайд №1Презентация по физике "Янтарная сказка о статическом электричестве" - скачать бесплатно, слайд №2Презентация по физике "Янтарная сказка о статическом электричестве" - скачать бесплатно, слайд №3Презентация по физике "Янтарная сказка о статическом электричестве" - скачать бесплатно, слайд №4Презентация по физике "Янтарная сказка о статическом электричестве" - скачать бесплатно, слайд №5Презентация по физике "Янтарная сказка о статическом электричестве" - скачать бесплатно, слайд №6Презентация по физике "Янтарная сказка о статическом электричестве" - скачать бесплатно, слайд №7Презентация по физике "Янтарная сказка о статическом электричестве" - скачать бесплатно, слайд №8Презентация по физике "Янтарная сказка о статическом электричестве" - скачать бесплатно, слайд №9Презентация по физике "Янтарная сказка о статическом электричестве" - скачать бесплатно, слайд №10Презентация по физике "Янтарная сказка о статическом электричестве" - скачать бесплатно, слайд №11Презентация по физике "Янтарная сказка о статическом электричестве" - скачать бесплатно, слайд №12Презентация по физике "Янтарная сказка о статическом электричестве" - скачать бесплатно, слайд №13Презентация по физике "Янтарная сказка о статическом электричестве" - скачать бесплатно, слайд №14Презентация по физике "Янтарная сказка о статическом электричестве" - скачать бесплатно, слайд №15Презентация по физике "Янтарная сказка о статическом электричестве" - скачать бесплатно, слайд №16Презентация по физике "Янтарная сказка о статическом электричестве" - скачать бесплатно, слайд №17Презентация по физике "Янтарная сказка о статическом электричестве" - скачать бесплатно, слайд №18Презентация по физике "Янтарная сказка о статическом электричестве" - скачать бесплатно, слайд №19Презентация по физике "Янтарная сказка о статическом электричестве" - скачать бесплатно, слайд №20Презентация по физике "Янтарная сказка о статическом электричестве" - скачать бесплатно, слайд №21Презентация по физике "Янтарная сказка о статическом электричестве" - скачать бесплатно, слайд №22

Содержание

Вы можете ознакомиться и скачать Презентация по физике "Янтарная сказка о статическом электричестве" - скачать бесплатно. Презентация содержит 22 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1


Презентация по физике "Янтарная сказка о статическом электричестве" - скачать бесплатно, слайд №1
Описание слайда:

Слайд 2





         Внимание!
Все права защищены.
Копирование и заучивание наизусть разрешается!
Нарушители будут преследоваться по всей строгости физических законов!
Примечание: знак        означает переход в конец сказки к неприятным вопросам!               Пока его не трогай!!!
Если прочитал, то жми сюда
Описание слайда:
Внимание! Все права защищены. Копирование и заучивание наизусть разрешается! Нарушители будут преследоваться по всей строгости физических законов! Примечание: знак означает переход в конец сказки к неприятным вопросам! Пока его не трогай!!! Если прочитал, то жми сюда

Слайд 3





Все началось в Древней Греции с янтаря …
      Любители носить украшения из этого камня старались не одевать их поверх шерстяной одежды, так как приходилось мириться со свойством янтаря притягивать мелкий мусор (пыль, соломинки, волоски, и т.д.). Впервые исследованием этого явления занялся известный философ Фалес Милетский, но дальше наблюдений и забавных экспериментов                                                                      дело не пошло.
Описание слайда:
Все началось в Древней Греции с янтаря … Любители носить украшения из этого камня старались не одевать их поверх шерстяной одежды, так как приходилось мириться со свойством янтаря притягивать мелкий мусор (пыль, соломинки, волоски, и т.д.). Впервые исследованием этого явления занялся известный философ Фалес Милетский, но дальше наблюдений и забавных экспериментов дело не пошло.

Слайд 4





Сейчас трудно поверить, что 250 лет  назад человечество почти ничего не знало об электричестве. Изучение электрических явлений началось в первой половине XVIII в., и к концу этого столетия многое стало известным. Появились первые открытия и изобретения.
Сейчас трудно поверить, что 250 лет  назад человечество почти ничего не знало об электричестве. Изучение электрических явлений началось в первой половине XVIII в., и к концу этого столетия многое стало известным. Появились первые открытия и изобретения.
Описание слайда:
Сейчас трудно поверить, что 250 лет назад человечество почти ничего не знало об электричестве. Изучение электрических явлений началось в первой половине XVIII в., и к концу этого столетия многое стало известным. Появились первые открытия и изобретения. Сейчас трудно поверить, что 250 лет назад человечество почти ничего не знало об электричестве. Изучение электрических явлений началось в первой половине XVIII в., и к концу этого столетия многое стало известным. Появились первые открытия и изобретения.

Слайд 5





Историю науки об электрических явлениях можно начать с исследований Вильяма Гильберта, врача английской королевы Елизаветы. Первое сочинение  по электричеству и магнетизму Гильберт опубликовал в 1600 г., где описал электризацию трением, здесь же он впервые применил термин «электричество».
Первую электрическую машину с вращающимся шаром из серы  в 1650 г. построил немецкий ученый Отто Герике. Он провел много экспериментов, но объяснения им не нашел и лишь описал свои опыты в сочинении «Новые эксперименты», вышедшим в 1672 г. 
В 1729 году Стефен Грей открыл существование проводников и непроводников электричества.
Французский исследователь Шарль Дюфе в 1730 г. заметил, что в одних случаях наэлектризованные тела взаимно притягиваются, а в других – взаимно отталкиваются. Дюфе объяснил это явление тем, что существует два рода электричества – «смоляное» и «стеклянное». 
Более удачное обозначение двух родов электричества в 1778 г. дал известный физик и политический деятель Бенджамин Франклин. «Смоляное» электричество он назвал отрицательным, а «стеклянное» – положительным.
Первые приборы для обнаружения электричества появились в XVIII в. Один из первых электроскопов в 1745 году построил академик Петербургской Академии наук Георг Рихман. По углу отклонения стрелки можно было судить о величине заряда.
В 1746 г. в голландии Питером Мушенброком была изобретена лейденская банка (конденсатор – накопитель зарядов).
Описание слайда:
Историю науки об электрических явлениях можно начать с исследований Вильяма Гильберта, врача английской королевы Елизаветы. Первое сочинение по электричеству и магнетизму Гильберт опубликовал в 1600 г., где описал электризацию трением, здесь же он впервые применил термин «электричество». Первую электрическую машину с вращающимся шаром из серы в 1650 г. построил немецкий ученый Отто Герике. Он провел много экспериментов, но объяснения им не нашел и лишь описал свои опыты в сочинении «Новые эксперименты», вышедшим в 1672 г. В 1729 году Стефен Грей открыл существование проводников и непроводников электричества. Французский исследователь Шарль Дюфе в 1730 г. заметил, что в одних случаях наэлектризованные тела взаимно притягиваются, а в других – взаимно отталкиваются. Дюфе объяснил это явление тем, что существует два рода электричества – «смоляное» и «стеклянное». Более удачное обозначение двух родов электричества в 1778 г. дал известный физик и политический деятель Бенджамин Франклин. «Смоляное» электричество он назвал отрицательным, а «стеклянное» – положительным. Первые приборы для обнаружения электричества появились в XVIII в. Один из первых электроскопов в 1745 году построил академик Петербургской Академии наук Георг Рихман. По углу отклонения стрелки можно было судить о величине заряда. В 1746 г. в голландии Питером Мушенброком была изобретена лейденская банка (конденсатор – накопитель зарядов).

Слайд 6





В 1750 – 1790 годы увлечение «электричеством от трения» было всеобщим.
Проводились опыты по электризации  животных и людей, воспламенению спирта от искры и т.п.
Электрофорная машина, с помощью которой и сейчас делают опыты в физическом кабинете, была изобретена Уимсхерстом в 1870 г.
Именно в эти годы были открыты основные свойства электрического заряда и законы электростатики.
Описание слайда:
В 1750 – 1790 годы увлечение «электричеством от трения» было всеобщим. Проводились опыты по электризации животных и людей, воспламенению спирта от искры и т.п. Электрофорная машина, с помощью которой и сейчас делают опыты в физическом кабинете, была изобретена Уимсхерстом в 1870 г. Именно в эти годы были открыты основные свойства электрического заряда и законы электростатики.

Слайд 7


Презентация по физике "Янтарная сказка о статическом электричестве" - скачать бесплатно, слайд №7
Описание слайда:

Слайд 8





Свойства электрического заряда
Электрический заряд неотделим от частицы, которая его переносит.
Существует два вида электрических зарядов: положительные и отрицательные. 
Одноименные заряды отталкиваются, а разноименные притягиваются.
В природе существует самый маленький, неделимый далее, элементарный электрический заряд.
Описание слайда:
Свойства электрического заряда Электрический заряд неотделим от частицы, которая его переносит. Существует два вида электрических зарядов: положительные и отрицательные. Одноименные заряды отталкиваются, а разноименные притягиваются. В природе существует самый маленький, неделимый далее, элементарный электрический заряд.

Слайд 9





   Законы  электростатики
Закон сохранения электрического заряда:                                             В замкнутой системе тел суммарный заряд не изменяется при любых взаимодействиях тел между собой.
Закон взаимодействия электри-ческих зарядов (закон Кулона):                          Два точечных неподвижных заряда в вакууме взаимодейст-вуют с силой, которая прямопро-порциональна величинам зарядов и обратнопропорциональна квадрату расстояния между ними.
Описание слайда:
Законы электростатики Закон сохранения электрического заряда: В замкнутой системе тел суммарный заряд не изменяется при любых взаимодействиях тел между собой. Закон взаимодействия электри-ческих зарядов (закон Кулона): Два точечных неподвижных заряда в вакууме взаимодейст-вуют с силой, которая прямопро-порциональна величинам зарядов и обратнопропорциональна квадрату расстояния между ними.

Слайд 10





                 Электрическое поле
 Майкл Фарадей, 
   впервые ввел представление об электрическом     и магнитном полях.
Описание слайда:
Электрическое поле Майкл Фарадей, впервые ввел представление об электрическом и магнитном полях.

Слайд 11





В начале XX века ученые изучили строение атома   и объяснили многие электрические явления
Атом любого физического элемента состоит из ядра, содержащего положительно заряженные протоны и незаряженные нейтроны, а также из обращающихся вокруг ядра отрицательно заряженных электронов.
Описание слайда:
В начале XX века ученые изучили строение атома и объяснили многие электрические явления Атом любого физического элемента состоит из ядра, содержащего положительно заряженные протоны и незаряженные нейтроны, а также из обращающихся вокруг ядра отрицательно заряженных электронов.

Слайд 12





Физический словарик    
Ион (от греч. ion - идущий) - электрически заряженная частица,  образующаяся при потере или приобретении электронов атомом или группой атомов.
Нейтрон (от лат. neutreum - ни то ни се) - электрически нейтральная элементарная частица с массой, почти равной массе протона.
Нуклон (от лат. nucleus - ядро) - общее название нейтронов и протонов, как составных частиц ядра.
Протон (от греч. protos - первый) - устойчивая положительно заряженная элементарная частица, входит в состав атомного ядра.
Электрон (от греч. electron - янтарь, смола) - устойчивая отрицательно заряженная элементарная частица (почти в 2000 раз легче протона и нейтрона).
Описание слайда:
Физический словарик Ион (от греч. ion - идущий) - электрически заряженная частица, образующаяся при потере или приобретении электронов атомом или группой атомов. Нейтрон (от лат. neutreum - ни то ни се) - электрически нейтральная элементарная частица с массой, почти равной массе протона. Нуклон (от лат. nucleus - ядро) - общее название нейтронов и протонов, как составных частиц ядра. Протон (от греч. protos - первый) - устойчивая положительно заряженная элементарная частица, входит в состав атомного ядра. Электрон (от греч. electron - янтарь, смола) - устойчивая отрицательно заряженная элементарная частица (почти в 2000 раз легче протона и нейтрона).

Слайд 13





Строение атомов
Теория строения атомов создавалась в XX веке многими учеными.
Описание слайда:
Строение атомов Теория строения атомов создавалась в XX веке многими учеными.

Слайд 14





Как  устроено  вещество?
Структура любого твердого вещества представляет собой ионную кристаллическую решетку и беспорядочно движущиеся внутри нее электроны.
Понимание этого факта позволяет объяснить многие известные электрические явления
Описание слайда:
Как устроено вещество? Структура любого твердого вещества представляет собой ионную кристаллическую решетку и беспорядочно движущиеся внутри нее электроны. Понимание этого факта позволяет объяснить многие известные электрические явления

Слайд 15





Историческая справка
Природу известного еще древним грекам «рукотворного» электрического явления – электризации трением – удалось установить только во второй половине прошлого века. Ленинградский физик        М. И. Корнфельд выяснил, что трение здесь играет второстепенную роль – оно необходимо только для более тесного сближения поверхностей диэлектриков.
Окружающие нас тела, как правило, электрически ней-                   тральны, т. е. отрицательные и положительные заряды компенсируются с высокой точностью. Вследствие                     теплового движения и распределения электронов по                    скоростям внутри тела часть из них обладает кинети­                      ческой энергией, достаточной для выхода за его пре-                           делы. Такая энергия называется термоэлектронной                              работой выхода и имеет разные значения для разных                         тел. В итоге у поверхности тела образуется электронный газ.                                 При обычных условиях наступает динамическое равновесие:                    количества электронов, покидающих тело и входящих в него, примерно равны. При сближении поверхностей тел, настолько тесном, что слои электронного газа перекрываются, начинается обмен электронами: они перемещаются от тела с меньшей работой выхода к телу, у которого она большая.
Таким образом, более правильно говорить не электризация посредством трения тел, а электризация посредством контакта тел.
Описание слайда:
Историческая справка Природу известного еще древним грекам «рукотворного» электрического явления – электризации трением – удалось установить только во второй половине прошлого века. Ленинградский физик М. И. Корнфельд выяснил, что трение здесь играет второстепенную роль – оно необходимо только для более тесного сближения поверхностей диэлектриков. Окружающие нас тела, как правило, электрически ней- тральны, т. е. отрицательные и положительные заряды компенсируются с высокой точностью. Вследствие теплового движения и распределения электронов по скоростям внутри тела часть из них обладает кинети­ ческой энергией, достаточной для выхода за его пре- делы. Такая энергия называется термоэлектронной работой выхода и имеет разные значения для разных тел. В итоге у поверхности тела образуется электронный газ. При обычных условиях наступает динамическое равновесие: количества электронов, покидающих тело и входящих в него, примерно равны. При сближении поверхностей тел, настолько тесном, что слои электронного газа перекрываются, начинается обмен электронами: они перемещаются от тела с меньшей работой выхода к телу, у которого она большая. Таким образом, более правильно говорить не электризация посредством трения тел, а электризация посредством контакта тел.

Слайд 16





Молниеотвод
Это устройство для защиты зданий, промышленных, транспортных, сельскохозяйственных и других сооружений от разрушительных последствий прямого попадания молнии.
 Состоит из металлического стержня или троса, возвышающегося над защищаемым объектом, и из надежного заземления. 
Часто молниеотвод ошибочно называют громоотводом.
Молниеотвод: 1 — стальная опора; 2 — стержень; 3 — заземление.
Описание слайда:
Молниеотвод Это устройство для защиты зданий, промышленных, транспортных, сельскохозяйственных и других сооружений от разрушительных последствий прямого попадания молнии. Состоит из металлического стержня или троса, возвышающегося над защищаемым объектом, и из надежного заземления. Часто молниеотвод ошибочно называют громоотводом. Молниеотвод: 1 — стальная опора; 2 — стержень; 3 — заземление.

Слайд 17





Знание – сила
Описание слайда:
Знание – сила

Слайд 18





Интересные факты 
1. Впервые электризация жидкости при дроблении была замечена у водопадов Швейцарии в 1786 г. С 1913 г. явление получило название баллоэлектрического эффекта. Эффект электризации наблюдается не только у водопадов на открытой местности, но и в пещерах. Заряд воздуху у водопадов сообщают микроскопические капельки воды и молекулярные комплексы, которые при дроблении отрываются от водной поверхности и уносятся в окружающую среду. Наиболее значительный эффект электризации воздуха наблюдается у самых больших водопадов мира - Игуассу на границе Бразилии и Аргентины (высота падения воды - 190 м, ширина потока - 1 500 м) и Виктория на реке Замбези в Африке (высота падения воды - 133 м, ширина потока -1 600 м). У водопада Виктория за счет дробления воды возникает электрическое поле напряженностью 25 кВ/м. При дроблении пресной воды в воздух переходит отрицательный заряд. Поэтому в воздухе у водопадов количество отрицательных ионов превышает количество положительных. Около небольшого водопада Учан-Су в Крыму отношение отрицательных ионов к количеству положительных равно 6,2.
2. У берегов морей воздух приобретает положительный заряд, вследствие разбрызгивания соленой воды. На поверхности морей и океанов разбрызгивание воды начинается при скорости ветра бо­лее 10 м/с, когда на волнах появляются гребешки пены. Отношение положительных зарядов к отрицательным зарядам в воздухе над Черным и Азовским морями достигает при бурном море 2,04, при зыби- 1,48.
Описание слайда:
Интересные факты 1. Впервые электризация жидкости при дроблении была замечена у водопадов Швейцарии в 1786 г. С 1913 г. явление получило название баллоэлектрического эффекта. Эффект электризации наблюдается не только у водопадов на открытой местности, но и в пещерах. Заряд воздуху у водопадов сообщают микроскопические капельки воды и молекулярные комплексы, которые при дроблении отрываются от водной поверхности и уносятся в окружающую среду. Наиболее значительный эффект электризации воздуха наблюдается у самых больших водопадов мира - Игуассу на границе Бразилии и Аргентины (высота падения воды - 190 м, ширина потока - 1 500 м) и Виктория на реке Замбези в Африке (высота падения воды - 133 м, ширина потока -1 600 м). У водопада Виктория за счет дробления воды возникает электрическое поле напряженностью 25 кВ/м. При дроблении пресной воды в воздух переходит отрицательный заряд. Поэтому в воздухе у водопадов количество отрицательных ионов превышает количество положительных. Около небольшого водопада Учан-Су в Крыму отношение отрицательных ионов к количеству положительных равно 6,2. 2. У берегов морей воздух приобретает положительный заряд, вследствие разбрызгивания соленой воды. На поверхности морей и океанов разбрызгивание воды начинается при скорости ветра бо­лее 10 м/с, когда на волнах появляются гребешки пены. Отношение положительных зарядов к отрицательным зарядам в воздухе над Черным и Азовским морями достигает при бурном море 2,04, при зыби- 1,48.

Слайд 19





Электризация тел на производстве 
На производстве многочисленные проявления электризации тел усложняют некоторые технологические процессы. Так, в текстильной промышленности электризация нитей приводит к их взаимному отталкиванию, расщеплению, притягиванию к поверхности роликов и веретен. Кроме того, заряженная ткань или пряжа притягивает легкие мелкие предметы и тем самым загрязняется.
Много проблем доставляет электризация тел в авиации. При полете вследствие трения о воздух или же при полете вблизи грозовых туч и заряженных облаков электризация обшивки самолета ведет к нарушению радиосвязи и искажению показаний электроизмерительных приборов. После посадки к самолету нельзя сразу же приставлять металлический трап, так как может произойти электрический разряд.
Очень часто явление электризации используют в технике. Так, притяжение легких мелких предметов наэлектризованными телами применяют в устройстве электрических фильтров для очистки дыма от мелких частиц пепла. Такие электрофильтры устанавливают в цехах размола цемента и фосфоритов, на химических заводах.
Широко распространен метод окраски деталей в электрическом поле: при распылении мелкие капельки краски приобретают электрический заряд, движутся под действием электрического поля к детали и равномерно покрывают ее поверхность тонким слоем.
Движение заряженных частиц краски в электрическом поле используют в типографском производстве.
Описание слайда:
Электризация тел на производстве На производстве многочисленные проявления электризации тел усложняют некоторые технологические процессы. Так, в текстильной промышленности электризация нитей приводит к их взаимному отталкиванию, расщеплению, притягиванию к поверхности роликов и веретен. Кроме того, заряженная ткань или пряжа притягивает легкие мелкие предметы и тем самым загрязняется. Много проблем доставляет электризация тел в авиации. При полете вследствие трения о воздух или же при полете вблизи грозовых туч и заряженных облаков электризация обшивки самолета ведет к нарушению радиосвязи и искажению показаний электроизмерительных приборов. После посадки к самолету нельзя сразу же приставлять металлический трап, так как может произойти электрический разряд. Очень часто явление электризации используют в технике. Так, притяжение легких мелких предметов наэлектризованными телами применяют в устройстве электрических фильтров для очистки дыма от мелких частиц пепла. Такие электрофильтры устанавливают в цехах размола цемента и фосфоритов, на химических заводах. Широко распространен метод окраски деталей в электрическом поле: при распылении мелкие капельки краски приобретают электрический заряд, движутся под действием электрического поля к детали и равномерно покрывают ее поверхность тонким слоем. Движение заряженных частиц краски в электрическом поле используют в типографском производстве.

Слайд 20





	Повторим?
С чего началось электричество?
Как давно развивается электростатика как наука?
Кто из ученых и какое имеет отношение к электростатике? 
Для чего нужен электроскоп?
Каковы свойства электрического заряда?
О чем говорят законы электростатики?
Как и из чего устроен атом?
Во что превратиться нейтральный атом, если примет или отдаст электрон?
Как устроены твердые тела?
Почему при контакте разнородных веществ происходит электризация?
Что вам известно об электрическом поле?
В чем вред и польза молний? Как от них спастись?
Где и для чего строят молниеотводы?
Хотя бы одну строчку из стиха ЗАПОМНИЛИ?
Описание слайда:
Повторим? С чего началось электричество? Как давно развивается электростатика как наука? Кто из ученых и какое имеет отношение к электростатике? Для чего нужен электроскоп? Каковы свойства электрического заряда? О чем говорят законы электростатики? Как и из чего устроен атом? Во что превратиться нейтральный атом, если примет или отдаст электрон? Как устроены твердые тела? Почему при контакте разнородных веществ происходит электризация? Что вам известно об электрическом поле? В чем вред и польза молний? Как от них спастись? Где и для чего строят молниеотводы? Хотя бы одну строчку из стиха ЗАПОМНИЛИ?

Слайд 21







Скоро следующая …
Описание слайда:
Скоро следующая …

Слайд 22





Ответы
    Молния выбирает самый короткий путь к земле, поэтому попадает в здания или в деревья. Высокие здания оборудуют металлическими полосами (прутьями), по которым электрический разряд уходит в землю. Это молниеотвод. Во время удара молнии электрический заряд многократно проходит на землю и обратно по одному и тому же пути. Это происходит с такой скоростью, что наш глаз видит только одну вспышку. На своем пути молния раскаляет воздух, который, быстро расширяясь, создает звуковую волну. Это вызывает громовые раскаты. Мы слышим их после того, как увидим молнию, так как звук распространяется значительно медленнее, чем свет.
     Если молния попадает в дерево, то под действием движущихся электрических зарядов древесный сок мгновенно нагревается и превращается в пар, который при огромном давлении разрывает ствол изнутри.
Описание слайда:
Ответы Молния выбирает самый короткий путь к земле, поэтому попадает в здания или в деревья. Высокие здания оборудуют металлическими полосами (прутьями), по которым электрический разряд уходит в землю. Это молниеотвод. Во время удара молнии электрический заряд многократно проходит на землю и обратно по одному и тому же пути. Это происходит с такой скоростью, что наш глаз видит только одну вспышку. На своем пути молния раскаляет воздух, который, быстро расширяясь, создает звуковую волну. Это вызывает громовые раскаты. Мы слышим их после того, как увидим молнию, так как звук распространяется значительно медленнее, чем свет. Если молния попадает в дерево, то под действием движущихся электрических зарядов древесный сок мгновенно нагревается и превращается в пар, который при огромном давлении разрывает ствол изнутри.



Похожие презентации
Mypresentation.ru
Загрузить презентацию