Описание слайда:
Решение:
1. Возьмем x1. Сравнивая его последовательно с остальными будем выбрасывать те, которые хуже, чем x1. Так, x2, x3 – хуже по Надежности, но лучше по Производительности. Значит, оно уже войдет в Х1. А вот x4 хуже (или равно) по всем показателям, чем x1, значит оно не войдет в Х1. Так же дело обстоит и с x5. В общем на выходе этого шага имеем Х1= { x2, x3, x6, x7} и x1 является Парето-оптимальным, т.к. нет никакого x }x1.
2. Берем альтернативу x2. По сравнению с ней x6 , x7 – не хуже, а x3 – даже более предпочтительнее. Значит, x2 – не является Парето-оптимальной, а Х2= { x3, x6, x7}.
3. Берем x3. При этом x6 – хуже ее и, значит x6 не будет включаться в Х3. Альтернатива x7 хуже по первым двум, но лучше по остальным трем показателям, значит она включается в Х3. Так как, нет ни одного x}x3, то x3 также является Парето-оптимальным решением.
4. Множество Х3 состоит из всего одной альтернативы x7, которая, очевидно, оказалась не хуже чем остальные уже рассмотренные, т.е. x7 также принадлежит XР.
Таким образом, множество Парето-оптимальных решений в данном примере составляют следующие варианты проектов: XР = { х1, х3, х7 }.
Решение:
1. Возьмем x1. Сравнивая его последовательно с остальными будем выбрасывать те, которые хуже, чем x1. Так, x2, x3 – хуже по Надежности, но лучше по Производительности. Значит, оно уже войдет в Х1. А вот x4 хуже (или равно) по всем показателям, чем x1, значит оно не войдет в Х1. Так же дело обстоит и с x5. В общем на выходе этого шага имеем Х1= { x2, x3, x6, x7} и x1 является Парето-оптимальным, т.к. нет никакого x }x1.
2. Берем альтернативу x2. По сравнению с ней x6 , x7 – не хуже, а x3 – даже более предпочтительнее. Значит, x2 – не является Парето-оптимальной, а Х2= { x3, x6, x7}.
3. Берем x3. При этом x6 – хуже ее и, значит x6 не будет включаться в Х3. Альтернатива x7 хуже по первым двум, но лучше по остальным трем показателям, значит она включается в Х3. Так как, нет ни одного x}x3, то x3 также является Парето-оптимальным решением.
4. Множество Х3 состоит из всего одной альтернативы x7, которая, очевидно, оказалась не хуже чем остальные уже рассмотренные, т.е. x7 также принадлежит XР.
Таким образом, множество Парето-оптимальных решений в данном примере составляют следующие варианты проектов: XР = { х1, х3, х7 }.