🗊 Решение задач по теме «Прямолинейное равноускоренное движение»

Категория: Физика
Нажмите для полного просмотра!
  
  Решение задач по теме  «Прямолинейное равноускоренное движение»  , слайд №1  
  Решение задач по теме  «Прямолинейное равноускоренное движение»  , слайд №2  
  Решение задач по теме  «Прямолинейное равноускоренное движение»  , слайд №3  
  Решение задач по теме  «Прямолинейное равноускоренное движение»  , слайд №4  
  Решение задач по теме  «Прямолинейное равноускоренное движение»  , слайд №5  
  Решение задач по теме  «Прямолинейное равноускоренное движение»  , слайд №6  
  Решение задач по теме  «Прямолинейное равноускоренное движение»  , слайд №7  
  Решение задач по теме  «Прямолинейное равноускоренное движение»  , слайд №8  
  Решение задач по теме  «Прямолинейное равноускоренное движение»  , слайд №9  
  Решение задач по теме  «Прямолинейное равноускоренное движение»  , слайд №10  
  Решение задач по теме  «Прямолинейное равноускоренное движение»  , слайд №11  
  Решение задач по теме  «Прямолинейное равноускоренное движение»  , слайд №12  
  Решение задач по теме  «Прямолинейное равноускоренное движение»  , слайд №13  
  Решение задач по теме  «Прямолинейное равноускоренное движение»  , слайд №14  
  Решение задач по теме  «Прямолинейное равноускоренное движение»  , слайд №15  
  Решение задач по теме  «Прямолинейное равноускоренное движение»  , слайд №16  
  Решение задач по теме  «Прямолинейное равноускоренное движение»  , слайд №17  
  Решение задач по теме  «Прямолинейное равноускоренное движение»  , слайд №18  
  Решение задач по теме  «Прямолинейное равноускоренное движение»  , слайд №19  
  Решение задач по теме  «Прямолинейное равноускоренное движение»  , слайд №20  
  Решение задач по теме  «Прямолинейное равноускоренное движение»  , слайд №21  
  Решение задач по теме  «Прямолинейное равноускоренное движение»  , слайд №22  
  Решение задач по теме  «Прямолинейное равноускоренное движение»  , слайд №23  
  Решение задач по теме  «Прямолинейное равноускоренное движение»  , слайд №24  
  Решение задач по теме  «Прямолинейное равноускоренное движение»  , слайд №25

Содержание

Вы можете ознакомиться и скачать Решение задач по теме «Прямолинейное равноускоренное движение» . Презентация содержит 25 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Решение задач по теме 
«Прямолинейное равноускоренное движение»
Описание слайда:
Решение задач по теме «Прямолинейное равноускоренное движение»

Слайд 2





Цели урока:
Повторить основные формулы по теме «Прямолинейное равноускоренное движение».
Сформировать навыки решения задач по данной теме.
Описание слайда:
Цели урока: Повторить основные формулы по теме «Прямолинейное равноускоренное движение». Сформировать навыки решения задач по данной теме.

Слайд 3





                         
                                          Основные формулы:

                  Vx – V0x
     1.   аx =                -  ускорение 
                       t
                    
     2.  Vx = Vox + aхt - скорость 

                      Vx + Vox
     3.    Sx =                  t 
                          2
                                ax t2
     4.   Sx = Vox t +                                          перемещение
                                   2
                    Vx2 –Vox2
     5.  Sx =                         
                        2ax

                                      axt2
     6.  X = Xo + Vox t +           -  уравнение прямолинейного 
                                        2       равноускоренного движения
Описание слайда:
Основные формулы: Vx – V0x 1. аx = - ускорение t 2. Vx = Vox + aхt - скорость Vx + Vox 3. Sx = t 2 ax t2 4. Sx = Vox t + перемещение 2 Vx2 –Vox2 5. Sx = 2ax axt2 6. X = Xo + Vox t + - уравнение прямолинейного 2 равноускоренного движения

Слайд 4





Задача №1.
С каким ускорением движется гоночный автомобиль, если его скорость за 6 с увеличивается со 144 до 216 км/ч?
Описание слайда:
Задача №1. С каким ускорением движется гоночный автомобиль, если его скорость за 6 с увеличивается со 144 до 216 км/ч?

Слайд 5





Задача №1.
С каким ускорением движется гоночный автомобиль, если его скорость за 6 с увеличивается со 144 до 216 км/ч?
     Дано                       “СИ”                     Решение:
     Vo=144 км/ч          40 м/с                          V - Vo
     V = 216 км/ч          60 м/с                   а = 
      t = 6 с                                                            t
                                                                         (60 – 40) м/с
      а - ?                                                    а =                          = 3,33 м/с2.
                                                                               6 с

                                                                               Ответ: а = 3,33 м/с2.
                 км        144 · 1000 м           м
       144          =                         = 40 
                ч               3600 с                с

                км       216 · 1000 м            м
       216          =                        = 60  
                 ч              3600 с                с
Описание слайда:
Задача №1. С каким ускорением движется гоночный автомобиль, если его скорость за 6 с увеличивается со 144 до 216 км/ч? Дано “СИ” Решение: Vo=144 км/ч 40 м/с V - Vo V = 216 км/ч 60 м/с а = t = 6 с t (60 – 40) м/с а - ? а = = 3,33 м/с2. 6 с Ответ: а = 3,33 м/с2. км 144 · 1000 м м 144 = = 40 ч 3600 с с км 216 · 1000 м м 216 = = 60 ч 3600 с с

Слайд 6





Задача №2
За какое время ракета приобретает первую космическую скорость 7,9 км/с, если она будет двигаться с ускорением 50 м/с2?
Описание слайда:
Задача №2 За какое время ракета приобретает первую космическую скорость 7,9 км/с, если она будет двигаться с ускорением 50 м/с2?

Слайд 7





Задача №2
За какое время ракета приобретает первую космическую скорость 7,9 км/с, если она будет двигаться с ускорением 50 м/с2?
      Дано:                    “СИ”                       Решение.
      V = 7,9 км/с           7900 м/с                       V – Vo                                      V
      Vo= 0                                                    а =                 , т.к. Vo = 0, то а =          
      а = 50 м/с2                                                                                 t                                             t
                                                                                                                        
                                                                                                                     V
                                                                                                     t =              .
                                                                              a

                                                                           7900 м/с
                                                                   t =                       = 158 с.
                                                                              50 м/с2

                                                                   Ответ: t = 158 с.
Описание слайда:
Задача №2 За какое время ракета приобретает первую космическую скорость 7,9 км/с, если она будет двигаться с ускорением 50 м/с2? Дано: “СИ” Решение. V = 7,9 км/с 7900 м/с V – Vo V Vo= 0 а = , т.к. Vo = 0, то а = а = 50 м/с2 t t V t = . a 7900 м/с t = = 158 с. 50 м/с2 Ответ: t = 158 с.

Слайд 8





Задача №3
Рассчитайте длину взлетной полосы, если скорость самолета 300 км/ч, а время разгона 40 с.
Описание слайда:
Задача №3 Рассчитайте длину взлетной полосы, если скорость самолета 300 км/ч, а время разгона 40 с.

Слайд 9





Задача №3
Рассчитайте длину взлетной полосы, если скорость самолета 300 км/ч, а время разгона 40 с.
     Дано:                     “СИ”                             Решение.
  V = 300 км/ч           83,3 м/с                             V + Vo
  Vo = 0                                                         S =               t
   t = 40с                                                                   2

                                                                             (83,3 + 0) м/с
  S - ?                                                            S =                          · 40 с = 1666 м
                                                                                    2

                                                                     Ответ: S = 1666 м ≈ 1,7 км.
Описание слайда:
Задача №3 Рассчитайте длину взлетной полосы, если скорость самолета 300 км/ч, а время разгона 40 с. Дано: “СИ” Решение. V = 300 км/ч 83,3 м/с V + Vo Vo = 0 S = t t = 40с 2 (83,3 + 0) м/с S - ? S = · 40 с = 1666 м 2 Ответ: S = 1666 м ≈ 1,7 км.

Слайд 10





Задача №4
Скорость гоночного автомобиля в момент начала разгона 10 м/с, ускорение 
5 м/с2. Определите путь, пройденный автомобилем за 10 с после начала движения. Какова скорость автомобиля в конце десятой секунды разгона?
Описание слайда:
Задача №4 Скорость гоночного автомобиля в момент начала разгона 10 м/с, ускорение 5 м/с2. Определите путь, пройденный автомобилем за 10 с после начала движения. Какова скорость автомобиля в конце десятой секунды разгона?

Слайд 11





Задача №4
Скорость гоночного автомобиля в момент начала разгона 10 м/с, ускорение 
5 м/с2. Определите путь, пройденный автомобилем за 10 с после начала движения. Какова скорость автомобиля в конце десятой секунды разгона? 
 Дано:                     Решение.
  Vo= 10 м/с                                a t2                                                            5 м/с2 · (10 с)2
  а = 5 м/с2                        S = Vot +             ;   S = 10 м/с · 10 с +                           = 350 м.
   t = 10 с                                       2                                                    2
   S - ?                        V = Vo + a t ;      V = 10 м/с + 5 м/с2 · 10 с = 60 м/с. 
   V - ?


                                   Ответ: S = 350 м; V = 60 м/с.
Описание слайда:
Задача №4 Скорость гоночного автомобиля в момент начала разгона 10 м/с, ускорение 5 м/с2. Определите путь, пройденный автомобилем за 10 с после начала движения. Какова скорость автомобиля в конце десятой секунды разгона? Дано: Решение. Vo= 10 м/с a t2 5 м/с2 · (10 с)2 а = 5 м/с2 S = Vot + ; S = 10 м/с · 10 с + = 350 м. t = 10 с 2 2 S - ? V = Vo + a t ; V = 10 м/с + 5 м/с2 · 10 с = 60 м/с. V - ? Ответ: S = 350 м; V = 60 м/с.

Слайд 12





Задача №5
Тормозной путь автомобиля, движущегося со скоростью 50 км/ч, равен 10 м. Чему равен тормозной путь этого же автомобиля при скорости 100 км/ч?
Описание слайда:
Задача №5 Тормозной путь автомобиля, движущегося со скоростью 50 км/ч, равен 10 м. Чему равен тормозной путь этого же автомобиля при скорости 100 км/ч?

Слайд 13





Задача №5
Тормозной путь автомобиля, движущегося со скоростью 50 км/ч, равен 10 м. Чему равен тормозной путь этого же автомобиля при скорости 100 км/ч?
 Дано:                    “СИ”                                       Решение.
  V = 0                                                             Vo12                     Vo12  
  Vo1 = 50 км/ч        13,9 м/с                 S1 =                     a =      
  Vo2 = 100 км/ч       27,8 м/с                          2a                        2S1
   S1 =10 м
                                                                         Vo22              Vo22 · 2S1                  Vo22 
                                                               S2 =             =                      = S1           
  S2 - ?                                                               2a              2  Vo12               Vo12
                                               
                                                                                (27,8 м/с)2                     772,84 
                                                             S2 = 10 м -----------------  =  10 ------------- = 40 м.
                                                                                 (13,9 м/с)2                    193,21

                                                                Ответ: S2 = 40 м.
Описание слайда:
Задача №5 Тормозной путь автомобиля, движущегося со скоростью 50 км/ч, равен 10 м. Чему равен тормозной путь этого же автомобиля при скорости 100 км/ч? Дано: “СИ” Решение. V = 0 Vo12 Vo12 Vo1 = 50 км/ч 13,9 м/с S1 = a = Vo2 = 100 км/ч 27,8 м/с 2a 2S1 S1 =10 м Vo22 Vo22 · 2S1 Vo22 S2 = = = S1 S2 - ? 2a 2 Vo12 Vo12 (27,8 м/с)2 772,84 S2 = 10 м ----------------- = 10 ------------- = 40 м. (13,9 м/с)2 193,21 Ответ: S2 = 40 м.

Слайд 14





Задача №6
Какова длинна пробега самолета при посадке, если его посадочная скорость 140 км/ч, а ускорение при торможении 2 м/с2?
Описание слайда:
Задача №6 Какова длинна пробега самолета при посадке, если его посадочная скорость 140 км/ч, а ускорение при торможении 2 м/с2?

Слайд 15





Задача №6
Какова длинна пробега самолета при посадке, если его посадочная скорость 140 км/ч, а ускорение при торможении 2 м/с2?
 Дано:                      “СИ”                                 Решение.
  Vо = 140 км/ч        38,9 м/с                                V2 – Vo2
  а = 2 м/с2                                                                            S =                    ;        ax = - 2 м/с2.
   V = 0                                                                       2 ax
   
    S - ?                                                                    Vo2
                                                                      S =                 
                                                                                2а
           км        140 · 1000 м              м
    140          =                          = 38,9                       (38,9 м/с)2
            ч              3600 с                    с       S =                        ≈ 378 м.
                                                                          2 · 2 м/с2 

                                                                                                       Ответ: S = 378 м.
Описание слайда:
Задача №6 Какова длинна пробега самолета при посадке, если его посадочная скорость 140 км/ч, а ускорение при торможении 2 м/с2? Дано: “СИ” Решение. Vо = 140 км/ч 38,9 м/с V2 – Vo2 а = 2 м/с2 S = ; ax = - 2 м/с2. V = 0 2 ax S - ? Vo2 S = 2а км 140 · 1000 м м 140 = = 38,9 (38,9 м/с)2 ч 3600 с с S = ≈ 378 м. 2 · 2 м/с2 Ответ: S = 378 м.

Слайд 16


  
  Решение задач по теме  «Прямолинейное равноускоренное движение»  , слайд №16
Описание слайда:

Слайд 17





Задача №7
Автомобиль, имея начальную скорость 54 км/ч, при торможении по сухой дороге проходит 30 м, а по мокрой – 90 м. Определите для каждого случая ускорение и время торможения.
 Дано:                  “СИ”                                      Решение.
    V = 0                                              V + Vo                                  Vot                    2 S
Vo = 54 км/ч        15 м/с           S =                 t           S =                    t =          .
  S1 = 30 м                                            2                              2                       Vo 
  S2 = 90 м
                                                   t1 = ?                                    t2 = ?
   а - ?
   t - ?                                                 Vo2                                      Vo2
                                                   S =                        a =            .
                                                           2 a                          2 S

                                                  a1 = ?                                  a2 = ?

          Ответ: a1 = 3,75 м/с2; t1 = 4 с;                                  
                       a2 = 1,25 м/с2; t1 = 12 с.
Описание слайда:
Задача №7 Автомобиль, имея начальную скорость 54 км/ч, при торможении по сухой дороге проходит 30 м, а по мокрой – 90 м. Определите для каждого случая ускорение и время торможения. Дано: “СИ” Решение. V = 0 V + Vo Vot 2 S Vo = 54 км/ч 15 м/с S = t S = t = . S1 = 30 м 2 2 Vo S2 = 90 м t1 = ? t2 = ? а - ? t - ? Vo2 Vo2 S = a = . 2 a 2 S a1 = ? a2 = ? Ответ: a1 = 3,75 м/с2; t1 = 4 с; a2 = 1,25 м/с2; t1 = 12 с.

Слайд 18


  
  Решение задач по теме  «Прямолинейное равноускоренное движение»  , слайд №18
Описание слайда:

Слайд 19





Задача №8
При равноускоренном движении с начальной скоростью 5 м/с тело за 3 с прошло 20 м. С каким ускорением двигалось тело? Какова его скорость в конце третьей секунды? 
  Дано:                            Решение.
  Vо = 5м/с                                      a t2                          a t2                                                      2(S – Vot)
   t = 3 c                         S = Vot +                                  = S – Vot             a =                  .
  S = 20 м                                         2                      2                                             t2                                                                          
                                       V = Vо + at .                                                                                                                              
  a - ?                                                                           
  V - ?                                     2 · (20 м – 5 м/с · 3с)
                                        a =                                       ≈ 1,1 м/с2;
                                                             9 с2 

                                       V = 5 м/с + 1,1 м/с2 · 3 с = 8,3 м/с.

                                        Ответ: а = 1,1 м/с2; V = 8,3 м/с.
Описание слайда:
Задача №8 При равноускоренном движении с начальной скоростью 5 м/с тело за 3 с прошло 20 м. С каким ускорением двигалось тело? Какова его скорость в конце третьей секунды? Дано: Решение. Vо = 5м/с a t2 a t2 2(S – Vot) t = 3 c S = Vot + = S – Vot a = . S = 20 м 2 2 t2 V = Vо + at . a - ? V - ? 2 · (20 м – 5 м/с · 3с) a = ≈ 1,1 м/с2; 9 с2 V = 5 м/с + 1,1 м/с2 · 3 с = 8,3 м/с. Ответ: а = 1,1 м/с2; V = 8,3 м/с.

Слайд 20





Задача №9
Два велосипедиста едут навстречу друг другу. Первый, имея начальную скорость 9 км/ч, спускается с горы с ускорением 0,4 м/с2. Второй поднимается в гору с начальной скоростью 
18 км/ч и ускорением 0,2 м/с2. Через какое время  встретятся велосипедисты, если начальное расстояние между ними 200 м?
Описание слайда:
Задача №9 Два велосипедиста едут навстречу друг другу. Первый, имея начальную скорость 9 км/ч, спускается с горы с ускорением 0,4 м/с2. Второй поднимается в гору с начальной скоростью 18 км/ч и ускорением 0,2 м/с2. Через какое время встретятся велосипедисты, если начальное расстояние между ними 200 м?

Слайд 21





Задача №9
Два велосипедиста едут навстречу друг другу. Первый, имея начальную скорость 9 км/ч, спускается с горы с ускорением 0,4 м/с2. Второй поднимается в гору с начальной скоростью 
18 км/ч и ускорением 0,2 м/с2. Через какое время  встретятся велосипедисты, если начальное расстояние между ними 200 м? 
Дано:                                 “СИ”                           Решение.
Vo1x=9 км/ч               2,5 м/с                                                   
а1х= 0,4 м/с2
Vo2x= - 18 км/ч          - 5 м/с
а2х= - 0,2 м/с2
Хо2= 200 м
Хо1 = 0 м                                                                            а1х t2
t - ?                                                       Х1 = Хо1 + Vo1xt + 
                                                                                              2
                                                                                           а2х t2
                                                            Х2 = Хо2 + Vo2xt + 
                                                                                              2
Место встречи Х1 = Х2                                                              0,4 t2                                                                  0,2 t2
                                                                                          Х1 = 2,5 t +                     и     X2 = 200 – 5 t -  
                  или                                                         2                                                   2

      2,5 t + 0,2 t2 = 200 – 5 t – 0,1 t2            0,3 t2 + 7,5 t – 200 = 0                t ≈ 16,2 c.
Описание слайда:
Задача №9 Два велосипедиста едут навстречу друг другу. Первый, имея начальную скорость 9 км/ч, спускается с горы с ускорением 0,4 м/с2. Второй поднимается в гору с начальной скоростью 18 км/ч и ускорением 0,2 м/с2. Через какое время встретятся велосипедисты, если начальное расстояние между ними 200 м? Дано: “СИ” Решение. Vo1x=9 км/ч 2,5 м/с а1х= 0,4 м/с2 Vo2x= - 18 км/ч - 5 м/с а2х= - 0,2 м/с2 Хо2= 200 м Хо1 = 0 м а1х t2 t - ? Х1 = Хо1 + Vo1xt + 2 а2х t2 Х2 = Хо2 + Vo2xt + 2 Место встречи Х1 = Х2 0,4 t2 0,2 t2 Х1 = 2,5 t + и X2 = 200 – 5 t - или 2 2 2,5 t + 0,2 t2 = 200 – 5 t – 0,1 t2 0,3 t2 + 7,5 t – 200 = 0 t ≈ 16,2 c.

Слайд 22





Задача №10
Уравнение координаты имеет вид Х = 4 + 1,5t + t2. Какое это движение? Напишите формулу зависимости скорости тела от времени. Чему равны скорость и координата  тела через 6 с?
Описание слайда:
Задача №10 Уравнение координаты имеет вид Х = 4 + 1,5t + t2. Какое это движение? Напишите формулу зависимости скорости тела от времени. Чему равны скорость и координата тела через 6 с?

Слайд 23





Задача №10
Уравнение координаты имеет вид Х = 4 + 1,5t + t2. Какое это движение? Напишите формулу зависимости скорости тела от времени. Чему равны скорость и координата  тела через 6 с?
Дано:                                                    Решение. 
х = 4 + 1,5t + t2                    Запишем уравнение равноускоренного движения в                                              
t = 6c                              общем виде:
                                                                                   а t2
V -?                                                 Х = Хо + Voxt + 
X -?                                                                              2
                                        Сравним с данным уравнением:
                                                         х = 4 + 1,5t +1t2
                             Х0 = 4 м                        а  
                             Vox = 1,5 м/с                      = 1                а = 2 м/с2 > 0             
                                                                   2                  движение равноускоренное

        Запишем уравнение скорости:  V = Vo + a t                     V = 1,5 + 2 t
        Вычисляем: V = 1,5 м/с + 2 м/с2 · 6с = 13,5 м/с.
                                Х = 4м + 1,5 м/с · 6 с + 1м/с2 (6 с)2 = 49 м

Ответ: V = 1,5 + 2 t ;  V = 13,5 м/с; Х = 49 м.
Описание слайда:
Задача №10 Уравнение координаты имеет вид Х = 4 + 1,5t + t2. Какое это движение? Напишите формулу зависимости скорости тела от времени. Чему равны скорость и координата тела через 6 с? Дано: Решение. х = 4 + 1,5t + t2 Запишем уравнение равноускоренного движения в t = 6c общем виде: а t2 V -? Х = Хо + Voxt + X -? 2 Сравним с данным уравнением: х = 4 + 1,5t +1t2 Х0 = 4 м а Vox = 1,5 м/с = 1 а = 2 м/с2 > 0 2 движение равноускоренное Запишем уравнение скорости: V = Vo + a t V = 1,5 + 2 t Вычисляем: V = 1,5 м/с + 2 м/с2 · 6с = 13,5 м/с. Х = 4м + 1,5 м/с · 6 с + 1м/с2 (6 с)2 = 49 м Ответ: V = 1,5 + 2 t ; V = 13,5 м/с; Х = 49 м.

Слайд 24





Желаем успеха
 в самостоятельном 
решении задач!
Описание слайда:
Желаем успеха в самостоятельном решении задач!

Слайд 25


  
  Решение задач по теме  «Прямолинейное равноускоренное движение»  , слайд №25
Описание слайда:



Похожие презентации
Mypresentation.ru
Загрузить презентацию