🗊 Статистическая физика и термодинамика Окружающий нас мир состоит из макроскопических объектов – объектов, которые велики по

Категория: Физика
Нажмите для полного просмотра!
  
  Статистическая физика и термодинамика   Окружающий нас мир состоит из макроскопических объектов – объектов, которые велики по , слайд №1  
  Статистическая физика и термодинамика   Окружающий нас мир состоит из макроскопических объектов – объектов, которые велики по , слайд №2  
  Статистическая физика и термодинамика   Окружающий нас мир состоит из макроскопических объектов – объектов, которые велики по , слайд №3  
  Статистическая физика и термодинамика   Окружающий нас мир состоит из макроскопических объектов – объектов, которые велики по , слайд №4  
  Статистическая физика и термодинамика   Окружающий нас мир состоит из макроскопических объектов – объектов, которые велики по , слайд №5

Вы можете ознакомиться и скачать Статистическая физика и термодинамика Окружающий нас мир состоит из макроскопических объектов – объектов, которые велики по . Презентация содержит 5 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Статистическая физика и термодинамика 
Окружающий нас мир состоит из макроскопических объектов – объектов, которые велики по сравнению с атомными размерами и образованы огромным числом молекул. К ним относятся газы, жидкости, твердые тела и биологические организмы. Поведение макроскопических объектов может быть чрезвычайно сложным; оно является предметом изучения не только физики, но и других наук о природе – химии, биологии, геологии и т.д. Изучение свойств вещества с физической точки зрения может быть основано на молекулярно – кинетических представлениях – все вещества состоят из молекул, движущихся и взаимодействующих друг с другом в соответствии с законами механики
Описание слайда:
Статистическая физика и термодинамика Окружающий нас мир состоит из макроскопических объектов – объектов, которые велики по сравнению с атомными размерами и образованы огромным числом молекул. К ним относятся газы, жидкости, твердые тела и биологические организмы. Поведение макроскопических объектов может быть чрезвычайно сложным; оно является предметом изучения не только физики, но и других наук о природе – химии, биологии, геологии и т.д. Изучение свойств вещества с физической точки зрения может быть основано на молекулярно – кинетических представлениях – все вещества состоят из молекул, движущихся и взаимодействующих друг с другом в соответствии с законами механики

Слайд 2





На первый взгляд кажется, что изучение свойств любого макроскопического тела может быть сведено к решению механической задачи – нужно проследить за движением каждого отдельного атома, из которых состоит макроскопическая система. Однако такой подход сталкивается с весьма серьезными трудностями даже в случае, когда мы ограничиваемся только «физическими» процессами, не рассматривая химические реакции и биологические объекты. Во-первых, типичные макроскопические объекты содержат порядка 1025 взаимодействующих частиц, точное решение задачи о движении такого большого числа частиц настолько сложно, что возникающие здесь трудности вполне можно считать принципиальными. 
На первый взгляд кажется, что изучение свойств любого макроскопического тела может быть сведено к решению механической задачи – нужно проследить за движением каждого отдельного атома, из которых состоит макроскопическая система. Однако такой подход сталкивается с весьма серьезными трудностями даже в случае, когда мы ограничиваемся только «физическими» процессами, не рассматривая химические реакции и биологические объекты. Во-первых, типичные макроскопические объекты содержат порядка 1025 взаимодействующих частиц, точное решение задачи о движении такого большого числа частиц настолько сложно, что возникающие здесь трудности вполне можно считать принципиальными.
Описание слайда:
На первый взгляд кажется, что изучение свойств любого макроскопического тела может быть сведено к решению механической задачи – нужно проследить за движением каждого отдельного атома, из которых состоит макроскопическая система. Однако такой подход сталкивается с весьма серьезными трудностями даже в случае, когда мы ограничиваемся только «физическими» процессами, не рассматривая химические реакции и биологические объекты. Во-первых, типичные макроскопические объекты содержат порядка 1025 взаимодействующих частиц, точное решение задачи о движении такого большого числа частиц настолько сложно, что возникающие здесь трудности вполне можно считать принципиальными. На первый взгляд кажется, что изучение свойств любого макроскопического тела может быть сведено к решению механической задачи – нужно проследить за движением каждого отдельного атома, из которых состоит макроскопическая система. Однако такой подход сталкивается с весьма серьезными трудностями даже в случае, когда мы ограничиваемся только «физическими» процессами, не рассматривая химические реакции и биологические объекты. Во-первых, типичные макроскопические объекты содержат порядка 1025 взаимодействующих частиц, точное решение задачи о движении такого большого числа частиц настолько сложно, что возникающие здесь трудности вполне можно считать принципиальными.

Слайд 3





Во-вторых, описание макроскопических тел производится с помощью количественных или качественных макроскопических параметров, таких, например, как давление, температура, упругость, пластичность, вязкость, электрическая и магнитная проницаемость, прозрачность, цвет и т.д. Совершенно не ясно, каким образом можно «перевести» информацию о движении отдельных атомов «на язык» макроскопических параметров 
Во-вторых, описание макроскопических тел производится с помощью количественных или качественных макроскопических параметров, таких, например, как давление, температура, упругость, пластичность, вязкость, электрическая и магнитная проницаемость, прозрачность, цвет и т.д. Совершенно не ясно, каким образом можно «перевести» информацию о движении отдельных атомов «на язык» макроскопических параметров
Описание слайда:
Во-вторых, описание макроскопических тел производится с помощью количественных или качественных макроскопических параметров, таких, например, как давление, температура, упругость, пластичность, вязкость, электрическая и магнитная проницаемость, прозрачность, цвет и т.д. Совершенно не ясно, каким образом можно «перевести» информацию о движении отдельных атомов «на язык» макроскопических параметров Во-вторых, описание макроскопических тел производится с помощью количественных или качественных макроскопических параметров, таких, например, как давление, температура, упругость, пластичность, вязкость, электрическая и магнитная проницаемость, прозрачность, цвет и т.д. Совершенно не ясно, каким образом можно «перевести» информацию о движении отдельных атомов «на язык» макроскопических параметров

Слайд 4





Оказалось, что понять природу многих макроскопических свойств и связей между макроскопическими параметрами можно, если добавить к молекулярно – кинетическим представлениям статистические методы – рассматривать не движение каждого атома в отдельности, а оперировать усредненными характеристиками движения. При этом, к чисто механическим законам, описывающим движение атомов, приходится добавлять дополнительные, статистические постулаты – такие как эргодическая гипотеза или постулат о равновероятности допустимых состояний. 
Оказалось, что понять природу многих макроскопических свойств и связей между макроскопическими параметрами можно, если добавить к молекулярно – кинетическим представлениям статистические методы – рассматривать не движение каждого атома в отдельности, а оперировать усредненными характеристиками движения. При этом, к чисто механическим законам, описывающим движение атомов, приходится добавлять дополнительные, статистические постулаты – такие как эргодическая гипотеза или постулат о равновероятности допустимых состояний.
Описание слайда:
Оказалось, что понять природу многих макроскопических свойств и связей между макроскопическими параметрами можно, если добавить к молекулярно – кинетическим представлениям статистические методы – рассматривать не движение каждого атома в отдельности, а оперировать усредненными характеристиками движения. При этом, к чисто механическим законам, описывающим движение атомов, приходится добавлять дополнительные, статистические постулаты – такие как эргодическая гипотеза или постулат о равновероятности допустимых состояний. Оказалось, что понять природу многих макроскопических свойств и связей между макроскопическими параметрами можно, если добавить к молекулярно – кинетическим представлениям статистические методы – рассматривать не движение каждого атома в отдельности, а оперировать усредненными характеристиками движения. При этом, к чисто механическим законам, описывающим движение атомов, приходится добавлять дополнительные, статистические постулаты – такие как эргодическая гипотеза или постулат о равновероятности допустимых состояний.

Слайд 5





Статистическая физика – это раздел физики, в котором свойства вещества изучаются на основе молекулярно-кинетических представлений в совокупности со статистическими методами. 
Статистическая физика – это раздел физики, в котором свойства вещества изучаются на основе молекулярно-кинетических представлений в совокупности со статистическими методами. 
	Многие свойства веществ можно понять, не привлекая молекулярно-кинетических представлений, основываясь только на некоторых общих закономерностях, полученных как обобщение опытных данных. Такой подход используется в термодинамике – разделе физики, в котором изучаются общие свойства макроскопических систем, находящихся в состоянии равновесия
Описание слайда:
Статистическая физика – это раздел физики, в котором свойства вещества изучаются на основе молекулярно-кинетических представлений в совокупности со статистическими методами. Статистическая физика – это раздел физики, в котором свойства вещества изучаются на основе молекулярно-кинетических представлений в совокупности со статистическими методами. Многие свойства веществ можно понять, не привлекая молекулярно-кинетических представлений, основываясь только на некоторых общих закономерностях, полученных как обобщение опытных данных. Такой подход используется в термодинамике – разделе физики, в котором изучаются общие свойства макроскопических систем, находящихся в состоянии равновесия



Похожие презентации
Mypresentation.ru
Загрузить презентацию