🗊Презентация Таможенная статистика

Нажмите для полного просмотра!
Таможенная статистика, слайд №1Таможенная статистика, слайд №2Таможенная статистика, слайд №3Таможенная статистика, слайд №4Таможенная статистика, слайд №5Таможенная статистика, слайд №6Таможенная статистика, слайд №7Таможенная статистика, слайд №8Таможенная статистика, слайд №9Таможенная статистика, слайд №10Таможенная статистика, слайд №11Таможенная статистика, слайд №12Таможенная статистика, слайд №13Таможенная статистика, слайд №14Таможенная статистика, слайд №15Таможенная статистика, слайд №16Таможенная статистика, слайд №17Таможенная статистика, слайд №18Таможенная статистика, слайд №19Таможенная статистика, слайд №20Таможенная статистика, слайд №21Таможенная статистика, слайд №22Таможенная статистика, слайд №23Таможенная статистика, слайд №24Таможенная статистика, слайд №25Таможенная статистика, слайд №26Таможенная статистика, слайд №27Таможенная статистика, слайд №28Таможенная статистика, слайд №29Таможенная статистика, слайд №30Таможенная статистика, слайд №31Таможенная статистика, слайд №32Таможенная статистика, слайд №33Таможенная статистика, слайд №34Таможенная статистика, слайд №35Таможенная статистика, слайд №36Таможенная статистика, слайд №37Таможенная статистика, слайд №38Таможенная статистика, слайд №39Таможенная статистика, слайд №40Таможенная статистика, слайд №41Таможенная статистика, слайд №42Таможенная статистика, слайд №43Таможенная статистика, слайд №44Таможенная статистика, слайд №45Таможенная статистика, слайд №46Таможенная статистика, слайд №47Таможенная статистика, слайд №48Таможенная статистика, слайд №49Таможенная статистика, слайд №50Таможенная статистика, слайд №51Таможенная статистика, слайд №52Таможенная статистика, слайд №53Таможенная статистика, слайд №54Таможенная статистика, слайд №55Таможенная статистика, слайд №56Таможенная статистика, слайд №57Таможенная статистика, слайд №58Таможенная статистика, слайд №59Таможенная статистика, слайд №60Таможенная статистика, слайд №61Таможенная статистика, слайд №62Таможенная статистика, слайд №63Таможенная статистика, слайд №64Таможенная статистика, слайд №65Таможенная статистика, слайд №66Таможенная статистика, слайд №67Таможенная статистика, слайд №68Таможенная статистика, слайд №69Таможенная статистика, слайд №70Таможенная статистика, слайд №71Таможенная статистика, слайд №72Таможенная статистика, слайд №73Таможенная статистика, слайд №74Таможенная статистика, слайд №75Таможенная статистика, слайд №76Таможенная статистика, слайд №77Таможенная статистика, слайд №78Таможенная статистика, слайд №79Таможенная статистика, слайд №80Таможенная статистика, слайд №81Таможенная статистика, слайд №82Таможенная статистика, слайд №83Таможенная статистика, слайд №84Таможенная статистика, слайд №85Таможенная статистика, слайд №86Таможенная статистика, слайд №87Таможенная статистика, слайд №88Таможенная статистика, слайд №89Таможенная статистика, слайд №90Таможенная статистика, слайд №91Таможенная статистика, слайд №92Таможенная статистика, слайд №93Таможенная статистика, слайд №94Таможенная статистика, слайд №95Таможенная статистика, слайд №96Таможенная статистика, слайд №97Таможенная статистика, слайд №98Таможенная статистика, слайд №99Таможенная статистика, слайд №100Таможенная статистика, слайд №101Таможенная статистика, слайд №102Таможенная статистика, слайд №103Таможенная статистика, слайд №104Таможенная статистика, слайд №105Таможенная статистика, слайд №106Таможенная статистика, слайд №107Таможенная статистика, слайд №108Таможенная статистика, слайд №109Таможенная статистика, слайд №110Таможенная статистика, слайд №111Таможенная статистика, слайд №112Таможенная статистика, слайд №113Таможенная статистика, слайд №114Таможенная статистика, слайд №115Таможенная статистика, слайд №116Таможенная статистика, слайд №117Таможенная статистика, слайд №118Таможенная статистика, слайд №119Таможенная статистика, слайд №120Таможенная статистика, слайд №121Таможенная статистика, слайд №122

Содержание

Вы можете ознакомиться и скачать презентацию на тему Таможенная статистика. Доклад-сообщение содержит 122 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Таможенная статистика
Лекция 2
Описание слайда:
Таможенная статистика Лекция 2

Слайд 2





Тема 4. Система показателей и признаков в таможенной статистике
Описание слайда:
Тема 4. Система показателей и признаков в таможенной статистике

Слайд 3





Система показателей и признаков в таможенной статистике
Ключевым элементом таможенной статистики является система показателей, отражающих цифровую характеристику различных экономических явлений и процессов, а также экономики в целом. 
Под термином «система показателей» понимается некоторое упорядоченное множество взаимосвязанных и взаимосогласованных показателей, характеризующих экономику страны в целом и основные аспекты внешней торговли в частности.
	Определение содержания показателя и методов его оценки принято называть разработкой методологии.
Описание слайда:
Система показателей и признаков в таможенной статистике Ключевым элементом таможенной статистики является система показателей, отражающих цифровую характеристику различных экономических явлений и процессов, а также экономики в целом. Под термином «система показателей» понимается некоторое упорядоченное множество взаимосвязанных и взаимосогласованных показателей, характеризующих экономику страны в целом и основные аспекты внешней торговли в частности. Определение содержания показателя и методов его оценки принято называть разработкой методологии.

Слайд 4





Этапы разработки методологии
идентификация явлений и процессов, подлежащих статистическому изучению (определение типа данных, требующих разработки), формулирование целей, ради которых должны быть исчислены те или иные показатели (например, целью изучения импорта является измерение потребностей населения, их динамики, состояния внешнеэкономических связей страны и т.д.);

определение содержания показателей (например, при исчислении показателя экспорта должны быть точно определены те виды товаров, которые подлежат и не подлежат включению в этот показатель);
Описание слайда:
Этапы разработки методологии идентификация явлений и процессов, подлежащих статистическому изучению (определение типа данных, требующих разработки), формулирование целей, ради которых должны быть исчислены те или иные показатели (например, целью изучения импорта является измерение потребностей населения, их динамики, состояния внешнеэкономических связей страны и т.д.); определение содержания показателей (например, при исчислении показателя экспорта должны быть точно определены те виды товаров, которые подлежат и не подлежат включению в этот показатель);

Слайд 5





Этапы разработки методологии
определение методов оценки отдельных показателей, например, типа цен, которые должны быть использованы для оценки товаров при исчислении величины внешнеторгового оборота: цены ФОБ, СИФ и т. д.;
определение основных классификаций, которые должны быть применены для распределения изучаемых экономических явлений на однородные группы на основе тех или иных критериев (например, ТН ВЭД);
определение основных источников данных, необходимых для исчисления показателей, а также процедуры обработки собранных данных с целью получения обобщающих показателей.
Описание слайда:
Этапы разработки методологии определение методов оценки отдельных показателей, например, типа цен, которые должны быть использованы для оценки товаров при исчислении величины внешнеторгового оборота: цены ФОБ, СИФ и т. д.; определение основных классификаций, которые должны быть применены для распределения изучаемых экономических явлений на однородные группы на основе тех или иных критериев (например, ТН ВЭД); определение основных источников данных, необходимых для исчисления показателей, а также процедуры обработки собранных данных с целью получения обобщающих показателей.

Слайд 6





Система показателей таможенной статистики
Система показателей таможенной статистики должна соответствовать определенным требованиям, чтобы была возможность проводить описание и анализ их развития. 
Во-первых, она должна иметь всеохватывающий характер, т.е. распространяться на все аспекты  исследуемого процесса, должны быть охвачены все  хозяйствующие субъекты, все виды экономических операций, которые они выполняют. 
Во-вторых показатели системы, относящиеся к различным аспектам экономического процесса, должны быть методологически взаимосогласованы, т.е. они должны быть основаны на гармонизированных концепциях, определениях и классификациях.
Описание слайда:
Система показателей таможенной статистики Система показателей таможенной статистики должна соответствовать определенным требованиям, чтобы была возможность проводить описание и анализ их развития. Во-первых, она должна иметь всеохватывающий характер, т.е. распространяться на все аспекты исследуемого процесса, должны быть охвачены все хозяйствующие субъекты, все виды экономических операций, которые они выполняют. Во-вторых показатели системы, относящиеся к различным аспектам экономического процесса, должны быть методологически взаимосогласованы, т.е. они должны быть основаны на гармонизированных концепциях, определениях и классификациях.

Слайд 7





Система показателей и признаков
Система показателей и признаков, разрабатываемых таможенной статистикой внешней торговли на основе сведений ГТД, содержит:
Описание слайда:
Система показателей и признаков Система показателей и признаков, разрабатываемых таможенной статистикой внешней торговли на основе сведений ГТД, содержит:

Слайд 8





Система показателей и признаков
Период, к которому относится информация о внешнеторговой операции, определяется в соответствии с моментом учета. В таможенной статистике внешней торговли учет ввоза и вывоза товаров при водных, железнодорожных, автомобильных, воздушных перевозках производится при декларировании товара и ведется по дате выпуска товара, проставленной в ГТД. 
Данная система показателей и признаков информирует заинтересованные стороны о том, что ввозится и вывозится и в каком объеме (как в натуральном, так и в стоимостном выражении), а также какие зарубежные страны выступают партнерами России и каковы масштабы внешнеторговых сделок с ними.
Описание слайда:
Система показателей и признаков Период, к которому относится информация о внешнеторговой операции, определяется в соответствии с моментом учета. В таможенной статистике внешней торговли учет ввоза и вывоза товаров при водных, железнодорожных, автомобильных, воздушных перевозках производится при декларировании товара и ведется по дате выпуска товара, проставленной в ГТД. Данная система показателей и признаков информирует заинтересованные стороны о том, что ввозится и вывозится и в каком объеме (как в натуральном, так и в стоимостном выражении), а также какие зарубежные страны выступают партнерами России и каковы масштабы внешнеторговых сделок с ними.

Слайд 9





Система показателей и признаков
Особенности декларирования товаров, перемещаемых трубопроводным транспортом (нефть, нефтепродукты, газ, вода и др.) и по линиям электропередачи, обусловлены тем, что их перемещение осуществляется большими партиями в непрерывном режиме в течение длительного времени. 
Поэтому статистический учет, в связи с особенностью их декларирования, осуществляется по дате последнего транспортного документа, а для природного газа и электроэнергии – по дате последнего дня месяца, в котором поставлялся товар.
Описание слайда:
Система показателей и признаков Особенности декларирования товаров, перемещаемых трубопроводным транспортом (нефть, нефтепродукты, газ, вода и др.) и по линиям электропередачи, обусловлены тем, что их перемещение осуществляется большими партиями в непрерывном режиме в течение длительного времени. Поэтому статистический учет, в связи с особенностью их декларирования, осуществляется по дате последнего транспортного документа, а для природного газа и электроэнергии – по дате последнего дня месяца, в котором поставлялся товар.

Слайд 10





Классификация и кодирование товаров
Для классификации и кодирования товаров в таможенной статистике внешней торговли России применяется классификатор «Товарная номенклатура внешнеэкономической деятельности РФ» (ТН ВЭД России), структура которого представлена в Приложении 5. ТН ВЭД России основана на номенклатуре Гармонизированной системы описания и кодирования товаров (ГС) Всемирной таможенной организации (далее – ВТО). Схема построения ТН ВЭД России совпадает с ГС, которая имеет 5 уровней детализации товаров.
Описание слайда:
Классификация и кодирование товаров Для классификации и кодирования товаров в таможенной статистике внешней торговли России применяется классификатор «Товарная номенклатура внешнеэкономической деятельности РФ» (ТН ВЭД России), структура которого представлена в Приложении 5. ТН ВЭД России основана на номенклатуре Гармонизированной системы описания и кодирования товаров (ГС) Всемирной таможенной организации (далее – ВТО). Схема построения ТН ВЭД России совпадает с ГС, которая имеет 5 уровней детализации товаров.

Слайд 11





В ТН ВЭД России товары располагаются по степени их обработки (сырье, полуфабрикаты, готовые изделия)
Описание слайда:
В ТН ВЭД России товары располагаются по степени их обработки (сырье, полуфабрикаты, готовые изделия)

Слайд 12





В ТН ВЭД России товары располагаются по степени их обработки (сырье, полуфабрикаты, готовые изделия)
Первый (высший) уровень предусматривает группировку товаров в Разделы - с I по XXI. 
С целью конкретизации товаров, относящихся к соответствующему разделу, используются примечания.
Описание слайда:
В ТН ВЭД России товары располагаются по степени их обработки (сырье, полуфабрикаты, готовые изделия) Первый (высший) уровень предусматривает группировку товаров в Разделы - с I по XXI. С целью конкретизации товаров, относящихся к соответствующему разделу, используются примечания.

Слайд 13





В ТН ВЭД России товары располагаются по степени их обработки (сырье, полуфабрикаты, готовые изделия)
Второй уровень объединяет товары в товарные группы - с 01 по 97, исключая товарную группу 77, зарезервированную Комитетом по ГС ВТО для целей развития номенклатуры.
 Группы формируются по таким критериям, как, например: 
– материал, из которого изготовлен товар (Товарные группы 39-46, 70-81 и др.);
– функциональное предназначение товара (Товарные группы 30-34, 36, 37, 64-66, 84-97 и др.);
– степень обработки товара (от сырья до товара, прошедшего высокую степень обработки).
Для целей конкретизации товарных групп также используются Примечания к товарным группам.
Описание слайда:
В ТН ВЭД России товары располагаются по степени их обработки (сырье, полуфабрикаты, готовые изделия) Второй уровень объединяет товары в товарные группы - с 01 по 97, исключая товарную группу 77, зарезервированную Комитетом по ГС ВТО для целей развития номенклатуры. Группы формируются по таким критериям, как, например: – материал, из которого изготовлен товар (Товарные группы 39-46, 70-81 и др.); – функциональное предназначение товара (Товарные группы 30-34, 36, 37, 64-66, 84-97 и др.); – степень обработки товара (от сырья до товара, прошедшего высокую степень обработки). Для целей конкретизации товарных групп также используются Примечания к товарным группам.

Слайд 14





В ТН ВЭД России товары располагаются по степени их обработки (сырье, полуфабрикаты, готовые изделия)
Третий уровень группирует товары по товарным позициям (всего – 1244 позиции).
 В товарных позициях товары детализируются с учетом таких признаков как вид товара, его форма. Причем уровень конкретизации товара уже настолько точен, что описание товара имеет юридическое (правовое) значение и, как правило, не требует дополнительных примечаний.
Описание слайда:
В ТН ВЭД России товары располагаются по степени их обработки (сырье, полуфабрикаты, готовые изделия) Третий уровень группирует товары по товарным позициям (всего – 1244 позиции). В товарных позициях товары детализируются с учетом таких признаков как вид товара, его форма. Причем уровень конкретизации товара уже настолько точен, что описание товара имеет юридическое (правовое) значение и, как правило, не требует дополнительных примечаний.

Слайд 15





В ТН ВЭД России товары располагаются по степени их обработки (сырье, полуфабрикаты, готовые изделия)
На четвертом и пятом уровнях товары детализируются в субпозиции и подсубпозиции соответственно. При отсутствии полного текста описывающего товар допускается использование примечаний.
Таким образом, неотъемлемой частью ТН ВЭД являются примечания к разделам, группам, товарным позициям, субпозициям и подсубпозициям, а также Основные правила интерпретации ТН ВЭД.
Описание слайда:
В ТН ВЭД России товары располагаются по степени их обработки (сырье, полуфабрикаты, готовые изделия) На четвертом и пятом уровнях товары детализируются в субпозиции и подсубпозиции соответственно. При отсутствии полного текста описывающего товар допускается использование примечаний. Таким образом, неотъемлемой частью ТН ВЭД являются примечания к разделам, группам, товарным позициям, субпозициям и подсубпозициям, а также Основные правила интерпретации ТН ВЭД.

Слайд 16





ТН ВЭД России
В соответствии с соглашением о единой Товарной номенклатуре в РФ применяется Товарная номенклатура внешнеэкономической деятельности Содружества Независимых Государств (ТН ВЭД СНГ).
 В ТН ВЭД СНГ без каких-либо дополнений и изменений использованы все товарные позиции и субпозиции ГС, относящиеся к ним цифровые коды, а также основные правила интерпретации ГС.
Описание слайда:
ТН ВЭД России В соответствии с соглашением о единой Товарной номенклатуре в РФ применяется Товарная номенклатура внешнеэкономической деятельности Содружества Независимых Государств (ТН ВЭД СНГ). В ТН ВЭД СНГ без каких-либо дополнений и изменений использованы все товарные позиции и субпозиции ГС, относящиеся к ним цифровые коды, а также основные правила интерпретации ГС.

Слайд 17





Объем внешней торговли
Объем внешней торговли региона или страны в целом характеризуется системой показателей, которая включает:
абсолютные величины в натуральном выражении – объем вывезенных и ввезенных товаров по видам;
абсолютные стоимостные величины: объем экспорта (импорта) – всего, в том числе по видам вывезенных (ввезенных) товаров; объем внешнеторгового оборота; сальдо внешней торговли.
Все эти абсолютные величины являются интервальными, исчисляемыми за определенный период: месяц, квартал, год.
Описание слайда:
Объем внешней торговли Объем внешней торговли региона или страны в целом характеризуется системой показателей, которая включает: абсолютные величины в натуральном выражении – объем вывезенных и ввезенных товаров по видам; абсолютные стоимостные величины: объем экспорта (импорта) – всего, в том числе по видам вывезенных (ввезенных) товаров; объем внешнеторгового оборота; сальдо внешней торговли. Все эти абсолютные величины являются интервальными, исчисляемыми за определенный период: месяц, квартал, год.

Слайд 18





Объем внешней торговли
В масштабах отдельной страны (региона) объем внешнеторгового оборота (ВО) складывается из суммы стоимости экспорта (Э) и импорта (И), то есть по формуле
Сальдо внешней торговли (торгового баланса) страны (региона) (СВТ) определяется как разница между суммами экспорта (Э) и импорта (И), то есть по формуле:
Если СВТ положительно, значит экспорт превышает импорт, то есть торговый баланс активный, 
Если СВТ отрицательно, значит импорт больше экспорта, а торговый баланс пассивный. 
Если СВТ = 0, то такое соотношение в торговом балансе называется нетто-балансом.
Описание слайда:
Объем внешней торговли В масштабах отдельной страны (региона) объем внешнеторгового оборота (ВО) складывается из суммы стоимости экспорта (Э) и импорта (И), то есть по формуле Сальдо внешней торговли (торгового баланса) страны (региона) (СВТ) определяется как разница между суммами экспорта (Э) и импорта (И), то есть по формуле: Если СВТ положительно, значит экспорт превышает импорт, то есть торговый баланс активный, Если СВТ отрицательно, значит импорт больше экспорта, а торговый баланс пассивный. Если СВТ = 0, то такое соотношение в торговом балансе называется нетто-балансом.

Слайд 19





Объем внешней торговли
Сравнение экспорта с импортом может быть и относительным, при этом получается индекс координации, называемый коэффициентом покрытия импорта экспортом, определяемый по формуле:
Помимо стоимостных показателей внешнеторгового оборота и сальдо торгового баланса, определяемых на уровне отдельных стран, в международной статистике внешней торговли исчисляют оборот и сальдо мировой торговли.
Описание слайда:
Объем внешней торговли Сравнение экспорта с импортом может быть и относительным, при этом получается индекс координации, называемый коэффициентом покрытия импорта экспортом, определяемый по формуле: Помимо стоимостных показателей внешнеторгового оборота и сальдо торгового баланса, определяемых на уровне отдельных стран, в международной статистике внешней торговли исчисляют оборот и сальдо мировой торговли.

Слайд 20





Оборот мировой торговли
Оборот мировой торговли (ОМТ) характеризует общий объем перемещаемых между странами товаров и рассчитывается как сумма стоимости экспорта всех стран, то есть по формуле:
где n – число стран, осуществивших в отчетном периоде экспорт товаров.
Такая методика расчета ОМТ объясняется тем, что экспорт товаров из всех стран мира соответствует импорту в эти страны, поэтому суммирование объемов мирового экспорта и импорта по аналогии с предыдущей формулой  привело бы к двойному счету одних и тех же товаров.
Описание слайда:
Оборот мировой торговли Оборот мировой торговли (ОМТ) характеризует общий объем перемещаемых между странами товаров и рассчитывается как сумма стоимости экспорта всех стран, то есть по формуле: где n – число стран, осуществивших в отчетном периоде экспорт товаров. Такая методика расчета ОМТ объясняется тем, что экспорт товаров из всех стран мира соответствует импорту в эти страны, поэтому суммирование объемов мирового экспорта и импорта по аналогии с предыдущей формулой привело бы к двойному счету одних и тех же товаров.

Слайд 21





Сальдо мировой торговли
За счет различий в базисных ценах экспорта и импорта (экспорт – в ценах ФОБ, импорт – в ценах СИФ) возникает величина, именуемая в международной статистике как сальдо мировой торговли (СМТ), определяемая как разница между суммами стоимости экспорта и импорта всех стран мира, то есть по формуле
где m – число стран, импортировавших товары в отчетном периоде.
СМТ показывает, во что мировому сообществу обходится доставка товаров до стран-импортеров, при этом всегда СМТ < 0, так как цены СИФ на перемещаемые между странами товары всегда превышают цены ФОБ.
Описание слайда:
Сальдо мировой торговли За счет различий в базисных ценах экспорта и импорта (экспорт – в ценах ФОБ, импорт – в ценах СИФ) возникает величина, именуемая в международной статистике как сальдо мировой торговли (СМТ), определяемая как разница между суммами стоимости экспорта и импорта всех стран мира, то есть по формуле где m – число стран, импортировавших товары в отчетном периоде. СМТ показывает, во что мировому сообществу обходится доставка товаров до стран-импортеров, при этом всегда СМТ < 0, так как цены СИФ на перемещаемые между странами товары всегда превышают цены ФОБ.

Слайд 22





Статистика внешней торговли
Статистика внешней торговли изучает участие отдельных стран в международном разделении труда. Вовлеченность национальных экономик в мирохозяйственные связи отражается в системе показателей, в основе расчета которых лежат относительные статистические величины
Описание слайда:
Статистика внешней торговли Статистика внешней торговли изучает участие отдельных стран в международном разделении труда. Вовлеченность национальных экономик в мирохозяйственные связи отражается в системе показателей, в основе расчета которых лежат относительные статистические величины

Слайд 23





Основные статистические величины
доля отдельных стран или групп стран в мировой торговле определяется по формуле:
где Эj – общий объем экспорта j-й страны;
 n – число стран анализируемой группы, экспортировавших товары.
Описание слайда:
Основные статистические величины доля отдельных стран или групп стран в мировой торговле определяется по формуле: где Эj – общий объем экспорта j-й страны; n – число стран анализируемой группы, экспортировавших товары.

Слайд 24





Основные статистические величины
доля отдельных стран в экспорте отдельных товаров (товарных групп) показывает в рамках каких отраслей и видов производств развивается специализация страны в международном разделении труда, определяется по формуле:
где Эij – объем экспорта i-го товара j-й страны; 
m – число стран, экспортировавших i-й товар на мировой рынок.
Описание слайда:
Основные статистические величины доля отдельных стран в экспорте отдельных товаров (товарных групп) показывает в рамках каких отраслей и видов производств развивается специализация страны в международном разделении труда, определяется по формуле: где Эij – объем экспорта i-го товара j-й страны; m – число стран, экспортировавших i-й товар на мировой рынок.

Слайд 25





Доля  экспорта
доля экспорта отдельной страны в валовом национальном продукте (ВНП) показывает, какую часть произведенного ВНП страна направляет на внешний рынок или сколько на единицу ВНП приходится единиц вывезенных товаров, определяется по формуле 
где ВНПj – объем валового национального продукта j-й страны.
Описание слайда:
Доля экспорта доля экспорта отдельной страны в валовом национальном продукте (ВНП) показывает, какую часть произведенного ВНП страна направляет на внешний рынок или сколько на единицу ВНП приходится единиц вывезенных товаров, определяется по формуле где ВНПj – объем валового национального продукта j-й страны.

Слайд 26





Коэффициент  зависимости
коэффициент зависимости национальной экономики от импорта показывает, сколько на единицу произведенного ВНП приходится единиц ввезенных товаров, определяется по формуле:
где Иj – общий объем импорта j-й страны.
Описание слайда:
Коэффициент зависимости коэффициент зависимости национальной экономики от импорта показывает, сколько на единицу произведенного ВНП приходится единиц ввезенных товаров, определяется по формуле: где Иj – общий объем импорта j-й страны.

Слайд 27





Доля  экспорта
доля экспорта в производстве отдельных видов продукции определяется по формуле:
где Qij – объем производства i-го товара j-й страны.
Описание слайда:
Доля экспорта доля экспорта в производстве отдельных видов продукции определяется по формуле: где Qij – объем производства i-го товара j-й страны.

Слайд 28





Коэффициент зависимости 
коэффициент зависимости национальной экономики от импорта показывает, сколько на единицу произведенного ВНП приходится единиц ввезенных товаров, определяется по формуле 
где Иj – общий объем импорта j-й страны
Описание слайда:
Коэффициент зависимости коэффициент зависимости национальной экономики от импорта показывает, сколько на единицу произведенного ВНП приходится единиц ввезенных товаров, определяется по формуле где Иj – общий объем импорта j-й страны

Слайд 29





Доля  экспорта
доля экспорта в производстве отдельных видов продукции определяется по формуле 
где Qij – объем производства i-го товара j-й страны.
Описание слайда:
Доля экспорта доля экспорта в производстве отдельных видов продукции определяется по формуле где Qij – объем производства i-го товара j-й страны.

Слайд 30





Доля импорта
Доля импорта в потреблении отдельных видов продукции показывает зависимость экономики страны от импорта отдельных товаров, определяется по формуле
где Иij – объем импорта i-го товара j-й страны; Pij – объем потребления i-го товара j-й страны.
Описание слайда:
Доля импорта Доля импорта в потреблении отдельных видов продукции показывает зависимость экономики страны от импорта отдельных товаров, определяется по формуле где Иij – объем импорта i-го товара j-й страны; Pij – объем потребления i-го товара j-й страны.

Слайд 31





К оэффициент относительной экспортной специализации
коэффициент относительной экспортной специализации характеризует уровень международного разделения труда, определяется по формуле
где dij – доля экспорта i-го товара j-й страны в общем объеме экспорта i-го товара; di – доля экспорта i-го товара в общем объеме экспорта
Описание слайда:
К оэффициент относительной экспортной специализации коэффициент относительной экспортной специализации характеризует уровень международного разделения труда, определяется по формуле где dij – доля экспорта i-го товара j-й страны в общем объеме экспорта i-го товара; di – доля экспорта i-го товара в общем объеме экспорта

Слайд 32





Коэффициент  диверсификации
коэффициент диверсификации определяется по формуле
где n – объем товарной номенклатуры.
КДив определяется в интервале от 0 до 1. 
Если он стремится к 1, значит страна специализируется на мировой рынок в производстве суженной номенклатуры товаров. При расширении производства экспортной продукции, реализуемой данной страной на мировом рынке, коэффициент диверсификации приближается к 0. 
При КДив= 0 структура экспорта страны абсолютно диверсифицирована, т.е. структура экспорта j-й страны совпадает с его мировой структурой
Описание слайда:
Коэффициент диверсификации коэффициент диверсификации определяется по формуле где n – объем товарной номенклатуры. КДив определяется в интервале от 0 до 1. Если он стремится к 1, значит страна специализируется на мировой рынок в производстве суженной номенклатуры товаров. При расширении производства экспортной продукции, реализуемой данной страной на мировом рынке, коэффициент диверсификации приближается к 0. При КДив= 0 структура экспорта страны абсолютно диверсифицирована, т.е. структура экспорта j-й страны совпадает с его мировой структурой

Слайд 33





Тема 5. Ряды распределения в таможенной статистике
Описание слайда:
Тема 5. Ряды распределения в таможенной статистике

Слайд 34





Ряды распределения в таможенной статистике
Признаки, разрабатываемые таможенной статистикой внешней торговли варьируются (отличаются друг от друга) у различных единиц совокупности в один и тот же период или момент времени. 
Например, величина внешнеторгового оборота варьируется по подразделениям ФТС; величина экспорта (импорта) варьируется по направлениям экспорта (по разным странам-партнерам по внешней торговле), по видам товаров и т.п. 
	Причиной вариации являются разные условия существования разных единиц совокупности. Например, огромное число причин влияет на масштабы внешней торговли различных стран мира.
Описание слайда:
Ряды распределения в таможенной статистике Признаки, разрабатываемые таможенной статистикой внешней торговли варьируются (отличаются друг от друга) у различных единиц совокупности в один и тот же период или момент времени. Например, величина внешнеторгового оборота варьируется по подразделениям ФТС; величина экспорта (импорта) варьируется по направлениям экспорта (по разным странам-партнерам по внешней торговле), по видам товаров и т.п. Причиной вариации являются разные условия существования разных единиц совокупности. Например, огромное число причин влияет на масштабы внешней торговли различных стран мира.

Слайд 35





Ряды распределения в таможенной статистике
Первым этапом статистического изучения вариации является построение ряда распределения (или вариационного ряда) – упорядоченного распределения единиц совокупности по возрастающим (чаще) или по убывающим (реже) значениям признака и подсчет числа единиц с тем или иным значением признака.
Описание слайда:
Ряды распределения в таможенной статистике Первым этапом статистического изучения вариации является построение ряда распределения (или вариационного ряда) – упорядоченного распределения единиц совокупности по возрастающим (чаще) или по убывающим (реже) значениям признака и подсчет числа единиц с тем или иным значением признака.

Слайд 36





Ряды распределения в таможенной статистике
Существует 3 вида ряда распределения: 
ранжированный ряд;
дискретный;
интервальный ряд.
Описание слайда:
Ряды распределения в таможенной статистике Существует 3 вида ряда распределения: ранжированный ряд; дискретный; интервальный ряд.

Слайд 37





Ранжированный  ряд
Ранжированный ряд – это перечень отдельных единиц совокупности в порядке возрастания изучаемого признака;
Если численность единиц совокупности достаточно велика ранжированный ряд становится громоздким, и в таких случаях ряд распределения строится с помощью группировки единиц совокупности по значениям изучаемого признака 
(если признак принимает небольшое число значений, то строится дискретный ряд, а в противном случае – интервальный ряд);
Описание слайда:
Ранжированный ряд Ранжированный ряд – это перечень отдельных единиц совокупности в порядке возрастания изучаемого признака; Если численность единиц совокупности достаточно велика ранжированный ряд становится громоздким, и в таких случаях ряд распределения строится с помощью группировки единиц совокупности по значениям изучаемого признака (если признак принимает небольшое число значений, то строится дискретный ряд, а в противном случае – интервальный ряд);

Слайд 38





Дискретный  ряд
дискретный ряд  – это таблица, состоящая из двух столбцов (строк) – конкретных значений варьирующего признака Xi и числа единиц совокупности с данным значением признака fi – частот; 
число групп в дискретном ряду определяется числом реально существующих значений варьирующего признака;
Описание слайда:
Дискретный ряд дискретный ряд – это таблица, состоящая из двух столбцов (строк) – конкретных значений варьирующего признака Xi и числа единиц совокупности с данным значением признака fi – частот; число групп в дискретном ряду определяется числом реально существующих значений варьирующего признака;

Слайд 39





Интервальный ряд
Интервальный ряд – это таблица, состоящая из двух столбцов (строк) – интервалов варьирующего признака Xi и числа единиц совокупности, попадающих в данный интервал (частот), или долей этого числа в общей численности совокупностей (частостей).
Описание слайда:
Интервальный ряд Интервальный ряд – это таблица, состоящая из двух столбцов (строк) – интервалов варьирующего признака Xi и числа единиц совокупности, попадающих в данный интервал (частот), или долей этого числа в общей численности совокупностей (частостей).

Слайд 40





Этап 1. Построение ранжированного ряда распределения
Построим ряд распределения внешнеторгового оборота (ВО) по таможенным постам России, для чего необходимо провести статистическое наблюдение, то есть собрать первичный статистический материал, который представляет собой величину ВО по всем таможенным постам, численность которых составляет 709 ед.
Описание слайда:
Этап 1. Построение ранжированного ряда распределения Построим ряд распределения внешнеторгового оборота (ВО) по таможенным постам России, для чего необходимо провести статистическое наблюдение, то есть собрать первичный статистический материал, который представляет собой величину ВО по всем таможенным постам, численность которых составляет 709 ед.

Слайд 41





Этап 1. Построение ранжированного ряда распределения
Ввиду огромного массива данных применение сплошного наблюдения экономически нецелесообразно, поэтому в таких случаях применяется выборочный метод, то есть из общего массива данных (генеральная совокупность) отбирается некоторая часть (выборочная совокупность, или выборка), которая и подвергается статистическому анализу. 
При этом число единиц в выборке обозначают п, во всей генеральной совокупности – N. 
Отношение n/N называется относительный размер или частость выборки. 
Качество результатов выборочного метода зависит от репре­зентативности выборки, т.е. от того, насколько она представительна в генеральной совокупности. 
Для обеспечения репрезентативности вы­борки необходимо соблюдать принцип случайности отбора единиц.
Описание слайда:
Этап 1. Построение ранжированного ряда распределения Ввиду огромного массива данных применение сплошного наблюдения экономически нецелесообразно, поэтому в таких случаях применяется выборочный метод, то есть из общего массива данных (генеральная совокупность) отбирается некоторая часть (выборочная совокупность, или выборка), которая и подвергается статистическому анализу. При этом число единиц в выборке обозначают п, во всей генеральной совокупности – N. Отношение n/N называется относительный размер или частость выборки. Качество результатов выборочного метода зависит от репре­зентативности выборки, т.е. от того, насколько она представительна в генеральной совокупности. Для обеспечения репрезентативности вы­борки необходимо соблюдать принцип случайности отбора единиц.

Слайд 42





Этап 1. Построение ранжированного ряда распределения
В нашем примере про ВО примем частость выборки 	n/N =0,05 или 5%, 
то есть в выборку включим n = 0,05*709 = 35 таможенных постов из 709.
 Результаты выборочного наблюдения ВО по 35 таможенным постам за отчетный период представим в виде ранжированного по возрастанию величины ВО ряда распределения
Описание слайда:
Этап 1. Построение ранжированного ряда распределения В нашем примере про ВО примем частость выборки n/N =0,05 или 5%, то есть в выборку включим n = 0,05*709 = 35 таможенных постов из 709. Результаты выборочного наблюдения ВО по 35 таможенным постам за отчетный период представим в виде ранжированного по возрастанию величины ВО ряда распределения

Слайд 43





Этап 1. Построение ранжированного ряда распределения
Внешнеторговый оборот (ВО) по 35 таможенным постам, млн.долл.
Описание слайда:
Этап 1. Построение ранжированного ряда распределения Внешнеторговый оборот (ВО) по 35 таможенным постам, млн.долл.

Слайд 44





Этап 1. Построение ранжированного ряда распределения
Внешнеторговый оборот (ВО) по 35 таможенным постам, млн.долл.
Описание слайда:
Этап 1. Построение ранжированного ряда распределения Внешнеторговый оборот (ВО) по 35 таможенным постам, млн.долл.

Слайд 45





Этап 1. Построение ранжированного ряда распределения
Внешнеторговый оборот (ВО) по 35 таможенным постам, млн.долл.
Описание слайда:
Этап 1. Построение ранжированного ряда распределения Внешнеторговый оборот (ВО) по 35 таможенным постам, млн.долл.

Слайд 46





Этап 1. Построение ранжированного ряда распределения
Внешнеторговый оборот (ВО) по 35 таможенным постам, млн.долл.
Описание слайда:
Этап 1. Построение ранжированного ряда распределения Внешнеторговый оборот (ВО) по 35 таможенным постам, млн.долл.

Слайд 47





Этап 1. Построение ранжированного ряда распределения
Внешнеторговый оборот (ВО) по 35 таможенным постам, млн.долл.
Описание слайда:
Этап 1. Построение ранжированного ряда распределения Внешнеторговый оборот (ВО) по 35 таможенным постам, млн.долл.

Слайд 48





Этап 1. Построение ранжированного ряда распределения
Внешнеторговый оборот (ВО) по 35 таможенным постам, млн.долл.
Описание слайда:
Этап 1. Построение ранжированного ряда распределения Внешнеторговый оборот (ВО) по 35 таможенным постам, млн.долл.

Слайд 49





Этап 1. Построение ранжированного ряда распределения
Внешнеторговый оборот (ВО) по 35 таможенным постам, млн.долл.
Описание слайда:
Этап 1. Построение ранжированного ряда распределения Внешнеторговый оборот (ВО) по 35 таможенным постам, млн.долл.

Слайд 50





Этап 1. Построение ранжированного ряда распределения
Учитывая, что на основе выборочного обследования нельзя точно оценить изучаемый параметр генеральной совокупности, необходимо найти пределы, в которых он находится.
 Для этого необходимо определить изучаемый параметр по данным выборки
Описание слайда:
Этап 1. Построение ранжированного ряда распределения Учитывая, что на основе выборочного обследования нельзя точно оценить изучаемый параметр генеральной совокупности, необходимо найти пределы, в которых он находится. Для этого необходимо определить изучаемый параметр по данным выборки

Слайд 51





Этап 1. Построение ранжированного ряда распределения
В нашем примере про ВО определим его средний размер в выборке, приняв за X величину ВО, а за N – численность выборки n:
Описание слайда:
Этап 1. Построение ранжированного ряда распределения В нашем примере про ВО определим его средний размер в выборке, приняв за X величину ВО, а за N – численность выборки n:

Слайд 52





Этап 1. Построение ранжированного ряда распределения
Дисперсию определим по формуле:
Затем необходимо определить предельную ошибку выборки по формуле
Δ= tµ    ,	
где t – коэффициент доверия, зависящий от вероятности, с которой определяется предельная ошибка выборки; 
µ – средняя ошибка выборки, определяемая для повторной выборки по формуле, 
а для бесповторной – по формуле
Описание слайда:
Этап 1. Построение ранжированного ряда распределения Дисперсию определим по формуле: Затем необходимо определить предельную ошибку выборки по формуле Δ= tµ , где t – коэффициент доверия, зависящий от вероятности, с которой определяется предельная ошибка выборки; µ – средняя ошибка выборки, определяемая для повторной выборки по формуле, а для бесповторной – по формуле

Слайд 53





Этап 1. Построение ранжированного ряда распределения
В нашем примере про ВО выборка бесповторная, значит, применяя формулу, получим среднюю ошибку выборки при определении средней величины ВО в генеральной совокупности
Описание слайда:
Этап 1. Построение ранжированного ряда распределения В нашем примере про ВО выборка бесповторная, значит, применяя формулу, получим среднюю ошибку выборки при определении средней величины ВО в генеральной совокупности

Слайд 54





Этап 1. Построение ранжированного ряда распределения
Вероятность, которая принимается при расчете выборочной характеристики, называется доверительной. 
Чаще всего принимают вероятность P = 0,950 (t = 1,96), которая означает, что только в 5 случаях из 100 ошибка может выйти за установленные границы.
Предельная ошибка выборки при определении средней величины ВО: Δ= 1,96*3,48 = 6,82 (млн.долл.).
Описание слайда:
Этап 1. Построение ранжированного ряда распределения Вероятность, которая принимается при расчете выборочной характеристики, называется доверительной. Чаще всего принимают вероятность P = 0,950 (t = 1,96), которая означает, что только в 5 случаях из 100 ошибка может выйти за установленные границы. Предельная ошибка выборки при определении средней величины ВО: Δ= 1,96*3,48 = 6,82 (млн.долл.).

Слайд 55





Этап 1. Построение ранжированного ряда распределения
После расчета предельной ошибки находят доверительный интервал обобщающей характеристики генеральной совокупности для среднего значения, и для доли какого-либо признака:
Описание слайда:
Этап 1. Построение ранжированного ряда распределения После расчета предельной ошибки находят доверительный интервал обобщающей характеристики генеральной совокупности для среднего значения, и для доли какого-либо признака:

Слайд 56





Этап 2. Построение интервального ряда распределения
Построим интервальный ряд распределения ВО по таможенным постам России, для чего необходимо выбрать оптимальное число групп (интервалов признака) и установить длину (размах) интервала. 
Поскольку при анализе ряда распределения сравнивают частоты в разных интервалах, необходимо, чтобы длина интервалов была постоянной. Оптимальное число групп выбирается так, чтобы достаточной мере отразилось разнообразие значений признака в совокупности и в то же время закономерность распределении, его форма не искажалась случайными колебаниями частот. Если групп будет слишком мало, не проявится закономерность вариации; если групп будет чрезмерно много, случайные скачки частот исказят форму распределения.
Если приходится иметь дело с интервальным рядом распределения с неравными интервалами, то для сопоставимости нужно частоты или частости привести к единице интервала, полученное значение называется плотностью  ρ, то есть ρ = f/h
Описание слайда:
Этап 2. Построение интервального ряда распределения Построим интервальный ряд распределения ВО по таможенным постам России, для чего необходимо выбрать оптимальное число групп (интервалов признака) и установить длину (размах) интервала. Поскольку при анализе ряда распределения сравнивают частоты в разных интервалах, необходимо, чтобы длина интервалов была постоянной. Оптимальное число групп выбирается так, чтобы достаточной мере отразилось разнообразие значений признака в совокупности и в то же время закономерность распределении, его форма не искажалась случайными колебаниями частот. Если групп будет слишком мало, не проявится закономерность вариации; если групп будет чрезмерно много, случайные скачки частот исказят форму распределения. Если приходится иметь дело с интервальным рядом распределения с неравными интервалами, то для сопоставимости нужно частоты или частости привести к единице интервала, полученное значение называется плотностью ρ, то есть ρ = f/h

Слайд 57





Этап 2. Построение интервального ряда распределения
Чаще всего число групп в ряду распределения определяют по формуле Стерждесса
где k – число групп (округляемое до ближайшего целого числа); N – численность совокупности
Описание слайда:
Этап 2. Построение интервального ряда распределения Чаще всего число групп в ряду распределения определяют по формуле Стерждесса где k – число групп (округляемое до ближайшего целого числа); N – численность совокупности

Слайд 58





Этап 2. Построение интервального ряда распределения
Из формулы Стерджесса видно, что число групп – функция объема данных (N).
Зная число групп, рассчитывают длину (размах) интервала по формуле:
где Xмax и Xmin — максимальное и минимальное значения в совокупности.
Описание слайда:
Этап 2. Построение интервального ряда распределения Из формулы Стерджесса видно, что число групп – функция объема данных (N). Зная число групп, рассчитывают длину (размах) интервала по формуле: где Xмax и Xmin — максимальное и минимальное значения в совокупности.

Слайд 59





Этап 2. Построение интервального ряда распределения
В нашем примере про ВО по формуле Стерждесса определим число групп:
k = 1 + 3,322lg35 = 1+ 3,322*1,544 = 6,129 ≈ 6.
Рассчитаем длину (размах) интервала по формуле: 
h = (111,16 – 24,16)/6 = 87/6 = 14,5 (млн.долл.).
Описание слайда:
Этап 2. Построение интервального ряда распределения В нашем примере про ВО по формуле Стерждесса определим число групп: k = 1 + 3,322lg35 = 1+ 3,322*1,544 = 6,129 ≈ 6. Рассчитаем длину (размах) интервала по формуле: h = (111,16 – 24,16)/6 = 87/6 = 14,5 (млн.долл.).

Слайд 60





Этап 2. Построение интервального ряда распределения
Теперь построим интервальный ряд с 6 группами с интервалом 14,5 млн.долл. (см. первые 3 столбца табл.).
Описание слайда:
Этап 2. Построение интервального ряда распределения Теперь построим интервальный ряд с 6 группами с интервалом 14,5 млн.долл. (см. первые 3 столбца табл.).

Слайд 61





Этап 2. Построение интервального ряда распределения
Существенную помощь в анализе ряда распределения и его свойств оказывает графическое изображение. Интервальный ряд изображается столбиковой диаграммой, в которой основания столбиков, расположенные по оси абсцисс, – это интервалы значений варьирующего признака, а высоты столбиков – частоты, соответствующие масштабу по оси ординат.
Описание слайда:
Этап 2. Построение интервального ряда распределения Существенную помощь в анализе ряда распределения и его свойств оказывает графическое изображение. Интервальный ряд изображается столбиковой диаграммой, в которой основания столбиков, расположенные по оси абсцисс, – это интервалы значений варьирующего признака, а высоты столбиков – частоты, соответствующие масштабу по оси ординат.

Слайд 62





Этап 2. Построение интервального ряда распределения
Описание слайда:
Этап 2. Построение интервального ряда распределения

Слайд 63





Этап 2. Построение интервального ряда распределения
Вывод: чаще встречаются значения средних интервалов признака, реже – крайние (малые и большие) значения признака. Форма этого распределения близка к нормальному закону распределения, которое образуется, если на варьирующую переменную влияет большое число факторов, ни один из которых не имеет преобладающего значения.
Если имеется дискретный ряд распределения или используются середины интервалов (как в нашем примере про ВО – в таблице в 4-м столбце рассчитаны середины интервалов как полусумма значений начала и конца интервала), то графическое изображение такого ряда называется полигоном (см. рис. 9), которое получается соединением прямыми точек с координатами Xi и fi.
Описание слайда:
Этап 2. Построение интервального ряда распределения Вывод: чаще встречаются значения средних интервалов признака, реже – крайние (малые и большие) значения признака. Форма этого распределения близка к нормальному закону распределения, которое образуется, если на варьирующую переменную влияет большое число факторов, ни один из которых не имеет преобладающего значения. Если имеется дискретный ряд распределения или используются середины интервалов (как в нашем примере про ВО – в таблице в 4-м столбце рассчитаны середины интервалов как полусумма значений начала и конца интервала), то графическое изображение такого ряда называется полигоном (см. рис. 9), которое получается соединением прямыми точек с координатами Xi и fi.

Слайд 64





Этап 3. Расчет структурных характеристик ряда распределения
При изучении вариации применяются такие характеристики ряда распределения, которые описывают количественно его структуру, строение. Такова, например, медиана  – величина варьирующего признака, делящая совокупность на две равные части – со значением признака меньше медианы и со значением признака больше медианы.

В нашем примере про ВО медиана – это 18-й таможенный пост из 35 с величиной ВО 56,8 млн.долл. 
Из этого примера видно принципиальное различие между медианой и средней величиной: медиана не зависит от значений на краях ранжированного ряда. Даже если бы ВО 35-го таможенного поста был в 10 раз больше, величина медианы не изменилась бы.
Описание слайда:
Этап 3. Расчет структурных характеристик ряда распределения При изучении вариации применяются такие характеристики ряда распределения, которые описывают количественно его структуру, строение. Такова, например, медиана – величина варьирующего признака, делящая совокупность на две равные части – со значением признака меньше медианы и со значением признака больше медианы. В нашем примере про ВО медиана – это 18-й таможенный пост из 35 с величиной ВО 56,8 млн.долл. Из этого примера видно принципиальное различие между медианой и средней величиной: медиана не зависит от значений на краях ранжированного ряда. Даже если бы ВО 35-го таможенного поста был в 10 раз больше, величина медианы не изменилась бы.

Слайд 65





Этап 3. Расчет структурных характеристик ряда распределения
Медиану часто используют как более надежный показатель типичного значения признака, нежели средняя арифметическая, если ряд значений неоднороден, включает резкие отклонения от средней. В интервальном ряду распределения для нахождения медианы применяется формула:
Описание слайда:
Этап 3. Расчет структурных характеристик ряда распределения Медиану часто используют как более надежный показатель типичного значения признака, нежели средняя арифметическая, если ряд значений неоднороден, включает резкие отклонения от средней. В интервальном ряду распределения для нахождения медианы применяется формула:

Слайд 66





Этап 3. Расчет структурных характеристик ряда распределения
Аналогично медиане вычисляются значения признака, делящие совокупность на 4 равные по численности части – квартили, которые обозначаются заглавной латинской буквой Q с подписным значком номера квартиля. Ясно, что Q2 совпадает с Ме. Для первого и третьего квартилей приводим формулы и расчет по данным табл. (в млн долл)
Описание слайда:
Этап 3. Расчет структурных характеристик ряда распределения Аналогично медиане вычисляются значения признака, делящие совокупность на 4 равные по численности части – квартили, которые обозначаются заглавной латинской буквой Q с подписным значком номера квартиля. Ясно, что Q2 совпадает с Ме. Для первого и третьего квартилей приводим формулы и расчет по данным табл. (в млн долл)

Слайд 67





Этап 3. Расчет структурных характеристик ряда распределения
Так как Q2 = Ме = 59,30 млн.долл., видно, что различие между первым квартилем и медианой (–15,87) больше, чем между медианой и третьим квартилем (12,89). Этот факт свидетельствует о наличии некоторой несимметричности в средней области распределения, что заметно и на рис. 8.
	Значения признака, делящие ряд на 5 равных частей, называются квинтилями, на 10 частей – децилями, на 100 частей – перцентилями. 
Эти характеристики применяются при необходимости подробного изучения структуры ряда распределения
Описание слайда:
Этап 3. Расчет структурных характеристик ряда распределения Так как Q2 = Ме = 59,30 млн.долл., видно, что различие между первым квартилем и медианой (–15,87) больше, чем между медианой и третьим квартилем (12,89). Этот факт свидетельствует о наличии некоторой несимметричности в средней области распределения, что заметно и на рис. 8. Значения признака, делящие ряд на 5 равных частей, называются квинтилями, на 10 частей – децилями, на 100 частей – перцентилями. Эти характеристики применяются при необходимости подробного изучения структуры ряда распределения

Слайд 68





Этап 3. Расчет структурных характеристик ряда распределения
Важное значение имеет такая величина признака, которая встречается в изучаемом ряду распределения чаще всего. Такую величину принято называть модой. 	
В дискретном ряду мода определяется без вычисления как значение признака с наибольшей частотой. Обычно встречаются ряды с одним модальным значением признака. 
Если в ряду распределения встречаются 2 или несколько равных (и даже несколько различных, но больших чем соседние) значений признака, то он считается соответственно бимодальным или мультимодальным. 
Это свидетельствует о неоднородности совокупности, возможно, представляющей собой агрегат нескольких совокупностей с разными модами.
Описание слайда:
Этап 3. Расчет структурных характеристик ряда распределения Важное значение имеет такая величина признака, которая встречается в изучаемом ряду распределения чаще всего. Такую величину принято называть модой. В дискретном ряду мода определяется без вычисления как значение признака с наибольшей частотой. Обычно встречаются ряды с одним модальным значением признака. Если в ряду распределения встречаются 2 или несколько равных (и даже несколько различных, но больших чем соседние) значений признака, то он считается соответственно бимодальным или мультимодальным. Это свидетельствует о неоднородности совокупности, возможно, представляющей собой агрегат нескольких совокупностей с разными модами.

Слайд 69





Этап 3. Расчет структурных характеристик ряда распределения
В интервальном ряду распределения интервал с наибольшей частотой является модальным. Внутри этого интервала находят условное значение признака, вблизи которого плотность распределения (число единиц совокупности, приходящихся на единицу измерения варьирующего признака) достигает максимума. 
Это условное значение и считается точечной модой.
Описание слайда:
Этап 3. Расчет структурных характеристик ряда распределения В интервальном ряду распределения интервал с наибольшей частотой является модальным. Внутри этого интервала находят условное значение признака, вблизи которого плотность распределения (число единиц совокупности, приходящихся на единицу измерения варьирующего признака) достигает максимума. Это условное значение и считается точечной модой.

Слайд 70





Этап 3. Расчет структурных характеристик ряда распределения
Точечная мода располагается ближе к той из границ интервала, за которой частота в соседнем интервале больше частоты в интервале за другой границей модального интервала. Отсюда получаем обычно применяемую формулу 
где 	Мо– мода;
	Х0– нижнее значение модального интервала;
	 fMo – частота в модальном интервале;
	 fMo-1 – частота в предыдущем интервале;
	 fMo+1– частота в следующем интервале за модальным;
	 h  – величина интервала
Описание слайда:
Этап 3. Расчет структурных характеристик ряда распределения Точечная мода располагается ближе к той из границ интервала, за которой частота в соседнем интервале больше частоты в интервале за другой границей модального интервала. Отсюда получаем обычно применяемую формулу где Мо– мода; Х0– нижнее значение модального интервала; fMo – частота в модальном интервале; fMo-1 – частота в предыдущем интервале; fMo+1– частота в следующем интервале за модальным; h – величина интервала

Слайд 71





Этап 3. Расчет структурных характеристик ряда распределения
По данным табл. рассчитаем точечную моду по формуле 
В интервальном ряду распределения ВО по таможенным постам средняя арифметическая рассчитывается как взвешенная по частоте середина интервалов X
Описание слайда:
Этап 3. Расчет структурных характеристик ряда распределения По данным табл. рассчитаем точечную моду по формуле В интервальном ряду распределения ВО по таможенным постам средняя арифметическая рассчитывается как взвешенная по частоте середина интервалов X

Слайд 72





Этап 4. Расчет показателей  размера и интенсивности вариации
Простейшим показателем является размах вариации – абсолютная разность между максимальным и минимальным значениями признака из имеющихся в изучаемой совокупности значений .
Поскольку величина размаха характеризует лишь максимальное различие значений признака, она не может измерять закономерную силу его вариации во всей совокупности. Предназначенный для данной цели показатель должен учитывать и обобщать все различия значений признака в совокупности без исключения. Число таких различий равно числу сочетаний по два из всех единиц совокупности
Описание слайда:
Этап 4. Расчет показателей размера и интенсивности вариации Простейшим показателем является размах вариации – абсолютная разность между максимальным и минимальным значениями признака из имеющихся в изучаемой совокупности значений . Поскольку величина размаха характеризует лишь максимальное различие значений признака, она не может измерять закономерную силу его вариации во всей совокупности. Предназначенный для данной цели показатель должен учитывать и обобщать все различия значений признака в совокупности без исключения. Число таких различий равно числу сочетаний по два из всех единиц совокупности

Слайд 73





Этап 4. Расчет показателей  размера и интенсивности вариации
Проще использовать среднюю из отклонений отдельных значений признака от среднего арифметического значения признака, а таковых в нашем примере про ВО всего 35. Но среднее отклонение значений признака от средней арифметической величины согласно первому свойству последней равно нулю. Поэтому показателем силы вариации выступает не арифметическая средняя отклонений, а средний модуль отклонений, или среднее линейное отклонение
Описание слайда:
Этап 4. Расчет показателей размера и интенсивности вариации Проще использовать среднюю из отклонений отдельных значений признака от среднего арифметического значения признака, а таковых в нашем примере про ВО всего 35. Но среднее отклонение значений признака от средней арифметической величины согласно первому свойству последней равно нулю. Поэтому показателем силы вариации выступает не арифметическая средняя отклонений, а средний модуль отклонений, или среднее линейное отклонение

Слайд 74





Этап 4. Расчет показателей  размера и интенсивности вариации
В нашем примере про ВО по данным табл.  среднее линейное отклонение вычисляется как взвешенное по частоте отклонение по модулю середин интервалов от средней арифметической величины (расчет числителя произведен в 7-м столбце табл.), т.е. по формуле 
Это означает, что в среднем величина ВО в изучаемой совокупности таможенных постов отклонялась от средней величины ВО в РФ на 14,678 млн.долл.
Описание слайда:
Этап 4. Расчет показателей размера и интенсивности вариации В нашем примере про ВО по данным табл. среднее линейное отклонение вычисляется как взвешенное по частоте отклонение по модулю середин интервалов от средней арифметической величины (расчет числителя произведен в 7-м столбце табл.), т.е. по формуле Это означает, что в среднем величина ВО в изучаемой совокупности таможенных постов отклонялась от средней величины ВО в РФ на 14,678 млн.долл.

Слайд 75





Этап 4. Расчет показателей  размера и интенсивности вариации
Простота расчета и интерпретации составляют положительные стороны показателя Л, однако математические свойства модулей «плохие»: их нельзя поставить в соответствие с каким-либо вероятностным законом, в том числе и с нормальным распределением, параметром которого является не средний модуль отклонений, а среднее квадратическое отклонение, обозначаемое малой греческой буквой сигма (σ ) или s и вычисляемое по формуле  для ранжированного ряда и для интервального ряда
Описание слайда:
Этап 4. Расчет показателей размера и интенсивности вариации Простота расчета и интерпретации составляют положительные стороны показателя Л, однако математические свойства модулей «плохие»: их нельзя поставить в соответствие с каким-либо вероятностным законом, в том числе и с нормальным распределением, параметром которого является не средний модуль отклонений, а среднее квадратическое отклонение, обозначаемое малой греческой буквой сигма (σ ) или s и вычисляемое по формуле для ранжированного ряда и для интервального ряда

Слайд 76





Этап 4. Расчет показателей  размера и интенсивности вариации
В нашем примере про ВО по данным табл.  среднее квадратическое отклонение величины ВО по формуле  составило (расчет числителя произведен в 8-м столбце табл)
Описание слайда:
Этап 4. Расчет показателей размера и интенсивности вариации В нашем примере про ВО по данным табл. среднее квадратическое отклонение величины ВО по формуле составило (расчет числителя произведен в 8-м столбце табл)

Слайд 77





Этап 4. Расчет показателей  размера и интенсивности вариации
Среднее квадратическое отклонение по величине в реальных совокупностях всегда больше среднего модуля отклонений. Разница между ними тем больше, чем больше в изучаемой совокупности резких, выделяющихся отклонений, что служит индикатором «засоренности» совокупности неоднородными с основной массой элементами. Для нормального закона распределения отношение                        . 
В нашем примере про ВО: 
 т.е. в изучаемой совокупности наблюдаются некоторое число таможенных постов с отличающимися от основной массы величинами ВО.
Описание слайда:
Этап 4. Расчет показателей размера и интенсивности вариации Среднее квадратическое отклонение по величине в реальных совокупностях всегда больше среднего модуля отклонений. Разница между ними тем больше, чем больше в изучаемой совокупности резких, выделяющихся отклонений, что служит индикатором «засоренности» совокупности неоднородными с основной массой элементами. Для нормального закона распределения отношение . В нашем примере про ВО: т.е. в изучаемой совокупности наблюдаются некоторое число таможенных постов с отличающимися от основной массы величинами ВО.

Слайд 78





Этап 4. Расчет показателей  размера и интенсивности вариации
Квадрат среднего квадратического отклонения представляет собой дисперсию отклонений, на использовании которой основаны практически все методы математической статистики, ее формула для несгруппированных данных (простая дисперсия) и для сгруппированных (взвешенная дисперсия):
Описание слайда:
Этап 4. Расчет показателей размера и интенсивности вариации Квадрат среднего квадратического отклонения представляет собой дисперсию отклонений, на использовании которой основаны практически все методы математической статистики, ее формула для несгруппированных данных (простая дисперсия) и для сгруппированных (взвешенная дисперсия):

Слайд 79





Этап 4. Расчет показателей  размера и интенсивности вариации
Еще одним показателем силы вариации, характеризующим ее не по всей совокупности, а лишь в ее центральной части, служит среднее квартильное расстояние (отклонение), т.е. средняя величина разности между квартилями, определяемая по формуле
В нашем примере про ВО по формуле
Описание слайда:
Этап 4. Расчет показателей размера и интенсивности вариации Еще одним показателем силы вариации, характеризующим ее не по всей совокупности, а лишь в ее центральной части, служит среднее квартильное расстояние (отклонение), т.е. средняя величина разности между квартилями, определяемая по формуле В нашем примере про ВО по формуле

Слайд 80





Этап 4. Расчет показателей  размера и интенсивности вариации
Сила вариации в центральной части совокупности, как правило, меньше, чем в целом по всей совокупности. Соотношение между средним линейным отклонением и средним квартильным расстоянием служит для изучения структуры вариации: большое значение такого соотношения свидетельствует о наличии слабоварьирующего «ядра» и сильно рассеянного вокруг него окружения в изучаемой совокупности.
 Для нашего примера про ВО соотношение Л/q = 1,021, что говорит о совсем незначительном различии силы вариации в центральной части совокупности и на ее периферии.
Описание слайда:
Этап 4. Расчет показателей размера и интенсивности вариации Сила вариации в центральной части совокупности, как правило, меньше, чем в целом по всей совокупности. Соотношение между средним линейным отклонением и средним квартильным расстоянием служит для изучения структуры вариации: большое значение такого соотношения свидетельствует о наличии слабоварьирующего «ядра» и сильно рассеянного вокруг него окружения в изучаемой совокупности. Для нашего примера про ВО соотношение Л/q = 1,021, что говорит о совсем незначительном различии силы вариации в центральной части совокупности и на ее периферии.

Слайд 81





Этап 4. Расчет показателей  размера и интенсивности вариации
Для оценки интенсивности вариации и для сравнения ее в разных совокупностях и тем более для разных признаков необходимы относительные показатели вариации, которые вычисляются как отношение абсолютных показателей силы вариации, рассмотренных ранее, к средней арифметической величине признака, то есть показатели:
относительный размах вариации: 	

линейный коэффициент вариации: 	

квадратический коэффициент вариации: 

относительное квартильное расстояние: 
В нашем примере про ВО эти показатели составляют:
ρ= 87/60,82 =1,43, или 143%; 	λ = 14,678/60,82 = 0,241, или 24,1%; 
ν= 19,756/60,82 = 0,32, или 32%;	d = 14,38/60,82 = 0,236, или 23,6%.
Описание слайда:
Этап 4. Расчет показателей размера и интенсивности вариации Для оценки интенсивности вариации и для сравнения ее в разных совокупностях и тем более для разных признаков необходимы относительные показатели вариации, которые вычисляются как отношение абсолютных показателей силы вариации, рассмотренных ранее, к средней арифметической величине признака, то есть показатели: относительный размах вариации: линейный коэффициент вариации: квадратический коэффициент вариации: относительное квартильное расстояние: В нашем примере про ВО эти показатели составляют: ρ= 87/60,82 =1,43, или 143%; λ = 14,678/60,82 = 0,241, или 24,1%; ν= 19,756/60,82 = 0,32, или 32%; d = 14,38/60,82 = 0,236, или 23,6%.

Слайд 82





Этап 4. Расчет показателей  размера и интенсивности вариации
Оценка степени интенсивности вариации возможна только для каждого отдельного признака и совокупности определенного состава, она состоит в сравнении наблюдаемой вариации с некоторой обычной ее интенсивностью, принимаемой за норматив. 
Так, для совокупности таможенных постов вариация величины ВО может быть определена как слабая, если < 25%, умеренная при 25% < < 50% и сильная при > 50%.
Описание слайда:
Этап 4. Расчет показателей размера и интенсивности вариации Оценка степени интенсивности вариации возможна только для каждого отдельного признака и совокупности определенного состава, она состоит в сравнении наблюдаемой вариации с некоторой обычной ее интенсивностью, принимаемой за норматив. Так, для совокупности таможенных постов вариация величины ВО может быть определена как слабая, если < 25%, умеренная при 25% < < 50% и сильная при > 50%.

Слайд 83





Этап 5. Расчет моментов распределения и показателей его формы
Для дальнейшего изучения характера вариации используются средние значения разных степеней отклонений отдельных величин признака от его средней арифметической величины. 
Эти показатели называются центральные моменты распределения порядка, соответствующего степени, в которую возводятся отклонения или просто моментов (нецентральные моменты в таможенной статистике практически не используются).
Описание слайда:
Этап 5. Расчет моментов распределения и показателей его формы Для дальнейшего изучения характера вариации используются средние значения разных степеней отклонений отдельных величин признака от его средней арифметической величины. Эти показатели называются центральные моменты распределения порядка, соответствующего степени, в которую возводятся отклонения или просто моментов (нецентральные моменты в таможенной статистике практически не используются).

Слайд 84





Этап 5. Расчет моментов распределения и показателей его формы
Центральные моменты
Описание слайда:
Этап 5. Расчет моментов распределения и показателей его формы Центральные моменты

Слайд 85





Этап 5. Расчет моментов распределения и показателей его формы
Центральные моменты
Описание слайда:
Этап 5. Расчет моментов распределения и показателей его формы Центральные моменты

Слайд 86





Этап 5. Расчет моментов распределения и показателей его формы
Центральные моменты
Описание слайда:
Этап 5. Расчет моментов распределения и показателей его формы Центральные моменты

Слайд 87





Этап 5. Расчет моментов распределения и показателей его формы
Центральные моменты
Описание слайда:
Этап 5. Расчет моментов распределения и показателей его формы Центральные моменты

Слайд 88





Этап 5. Расчет моментов распределения и показателей его формы
Центральные моменты
Описание слайда:
Этап 5. Расчет моментов распределения и показателей его формы Центральные моменты

Слайд 89





Этап 5. Расчет моментов распределения и показателей его формы
Величина третьего момента μ3 зависит, как и его знак, от преобладания положительных кубов отклонений над отрицательными кубами либо наоборот. При нормальном и любом другом строго симметричном распределении сумма положительных кубов строго равна сумме отрицательных кубов, поэтому на основе третьего момента строится показатель, характеризующий степень асимметричности распределения – коэффициент асимметрии
Описание слайда:
Этап 5. Расчет моментов распределения и показателей его формы Величина третьего момента μ3 зависит, как и его знак, от преобладания положительных кубов отклонений над отрицательными кубами либо наоборот. При нормальном и любом другом строго симметричном распределении сумма положительных кубов строго равна сумме отрицательных кубов, поэтому на основе третьего момента строится показатель, характеризующий степень асимметричности распределения – коэффициент асимметрии

Слайд 90





Этап 5. Расчет моментов распределения и показателей его формы
В нашем примере про ВО показатель асимметрии составил (расчет числителя произведен в 9-м столбце табл.)
т.е. симметрия значительна
Описание слайда:
Этап 5. Расчет моментов распределения и показателей его формы В нашем примере про ВО показатель асимметрии составил (расчет числителя произведен в 9-м столбце табл.) т.е. симметрия значительна

Слайд 91





Этап 5. Расчет моментов распределения и показателей его формы
Английский статистик К.Пирсон на основе разности между средней арифметической величиной и модой предложил другой показатель асимметрии
В нашем примере по данным табл. показатель асимметрии составил
Описание слайда:
Этап 5. Расчет моментов распределения и показателей его формы Английский статистик К.Пирсон на основе разности между средней арифметической величиной и модой предложил другой показатель асимметрии В нашем примере по данным табл. показатель асимметрии составил

Слайд 92





Этап 5. Расчет моментов распределения и показателей его формы
Показатель асимметрии Пирсона зависит от степени асимметричности в средней части ряда распределения, а показатель асимметрии  – от крайних значений признака.
Описание слайда:
Этап 5. Расчет моментов распределения и показателей его формы Показатель асимметрии Пирсона зависит от степени асимметричности в средней части ряда распределения, а показатель асимметрии – от крайних значений признака.

Слайд 93





Этап 5. Расчет моментов распределения и показателей его формы
Таким образом, в нашем примере про ВО в средней части распределения наблюдается меньшая асимметрия, чем по краям, что видно и по графику (рис. 9). Распределения с сильной правосторонней и левосторонней асимметрией показаны на рис. 10.
Описание слайда:
Этап 5. Расчет моментов распределения и показателей его формы Таким образом, в нашем примере про ВО в средней части распределения наблюдается меньшая асимметрия, чем по краям, что видно и по графику (рис. 9). Распределения с сильной правосторонней и левосторонней асимметрией показаны на рис. 10.

Слайд 94





Этап 5. Расчет моментов распределения и показателей его формы
С помощью момента четвертого порядка характеризуется еще более сложное свойство рядов распределения – эксцесс (от англ. «излишество»). Показатель эксцесса рассчитывается по формуле
Описание слайда:
Этап 5. Расчет моментов распределения и показателей его формы С помощью момента четвертого порядка характеризуется еще более сложное свойство рядов распределения – эксцесс (от англ. «излишество»). Показатель эксцесса рассчитывается по формуле

Слайд 95





Этап 5. Расчет моментов распределения и показателей его формы
Чаще всего эксцесс интерпретируется как «крутизна» распределения, что не совсем верно. График распределения может выглядеть сколь угодно крутым в зависимости от силы вариации признака: чем слабее вариация, тем круче кривая распределения при данном масштабе.
Описание слайда:
Этап 5. Расчет моментов распределения и показателей его формы Чаще всего эксцесс интерпретируется как «крутизна» распределения, что не совсем верно. График распределения может выглядеть сколь угодно крутым в зависимости от силы вариации признака: чем слабее вариация, тем круче кривая распределения при данном масштабе.

Слайд 96





Этап 5. Расчет моментов распределения и показателей его формы
Чтобы показать, в чем состоит эксцесс распределения, и правильно его интерпретировать, нужно сравнить ряды с одинаковой силой вариации (одной и той же величиной σ) и разными показателями эксцесса. Чтобы не смешать эксцесс с асимметрией, все сравниваемые ряды должны быть симметричными. Такое сравнение изображено на рис. 11
Описание слайда:
Этап 5. Расчет моментов распределения и показателей его формы Чтобы показать, в чем состоит эксцесс распределения, и правильно его интерпретировать, нужно сравнить ряды с одинаковой силой вариации (одной и той же величиной σ) и разными показателями эксцесса. Чтобы не смешать эксцесс с асимметрией, все сравниваемые ряды должны быть симметричными. Такое сравнение изображено на рис. 11

Слайд 97





Этап 5. Расчет моментов распределения и показателей его формы
Наличие положительного эксцесса означает наличие слабоварьирующего «ядра» и сильно рассеянного вокруг него окружения в изучаемой совокупности. Отрицательный эксцесс означает отсутствие такого «ядра».
В нашем примере эксцесс составил 
(расчет числителя произведен в 10-м столбце табл. 18): , т.е. величина ВО по таможенным постам варьирует сильнее, чем при нормальном распределении.
Описание слайда:
Этап 5. Расчет моментов распределения и показателей его формы Наличие положительного эксцесса означает наличие слабоварьирующего «ядра» и сильно рассеянного вокруг него окружения в изучаемой совокупности. Отрицательный эксцесс означает отсутствие такого «ядра». В нашем примере эксцесс составил (расчет числителя произведен в 10-м столбце табл. 18): , т.е. величина ВО по таможенным постам варьирует сильнее, чем при нормальном распределении.

Слайд 98





Этап 5. Расчет моментов распределения и показателей его формы
По значениям показателей асимметрии и эксцесса распределения можно судить о близости распределения к нормальному: показатели асимметрии и эксцесса не должны превышать своих двукратных средних квадратических отклонений, т.е.
Описание слайда:
Этап 5. Расчет моментов распределения и показателей его формы По значениям показателей асимметрии и эксцесса распределения можно судить о близости распределения к нормальному: показатели асимметрии и эксцесса не должны превышать своих двукратных средних квадратических отклонений, т.е.

Слайд 99





Этап 5. Расчет моментов распределения и показателей его формы
Эти средние квадратические отклонения вычисляются по формулам
Описание слайда:
Этап 5. Расчет моментов распределения и показателей его формы Эти средние квадратические отклонения вычисляются по формулам

Слайд 100





Этап 5. Расчет моментов распределения и показателей его формы
Описание слайда:
Этап 5. Расчет моментов распределения и показателей его формы

Слайд 101





Этап 6. Проверка соответствия ряда распределения теоретическому
Под теоретической кривой распределения понимается графическое изображение ряда в виде непрерывной линии изменения частот в вариационном ряду, функционально связанного с изменением вариантов, другими словами, теоретическое распределение может быть выражено аналитически – формулой, которая связывает частоты и соответствующие значения признака. Такие алгебраические формулы носят название законов распределения. 
Большое познавательное значение имеет сопоставление фактических кривых распределения с теоретическими.
Описание слайда:
Этап 6. Проверка соответствия ряда распределения теоретическому Под теоретической кривой распределения понимается графическое изображение ряда в виде непрерывной линии изменения частот в вариационном ряду, функционально связанного с изменением вариантов, другими словами, теоретическое распределение может быть выражено аналитически – формулой, которая связывает частоты и соответствующие значения признака. Такие алгебраические формулы носят название законов распределения. Большое познавательное значение имеет сопоставление фактических кривых распределения с теоретическими.

Слайд 102





Этап 6. Проверка соответствия ряда распределения теоретическому
часто пользуются типом распределения, которое называется нормальным. Формула функции плотности нормального распределения имеет следующий вид:
 
где	 X	– значение изучаемого признака;
	 	– средняя арифметическая ряда;
	 σ	– среднее квадратическое отклонение;
	  	– нормированное отклонение;
	 π = 3,1415	– постоянное число (отношение длины окружности к ее диаметру);
	 e = 2,7182	– основание натурального логарифма.
Описание слайда:
Этап 6. Проверка соответствия ряда распределения теоретическому часто пользуются типом распределения, которое называется нормальным. Формула функции плотности нормального распределения имеет следующий вид: где X – значение изучаемого признака; – средняя арифметическая ряда; σ – среднее квадратическое отклонение; – нормированное отклонение; π = 3,1415 – постоянное число (отношение длины окружности к ее диаметру); e = 2,7182 – основание натурального логарифма.

Слайд 103





Этап 6. Проверка соответствия ряда распределения теоретическому
Следовательно, кривая нормального распределения может быть построена по двум параметрам – средней арифметической и среднему квадратическому отклонению. Поэтому важно выяснить, как эти параметры влияют на вид нормальной кривой.
	Если       не меняется, а изменяется только σ, то чем меньше σ, тем более вытянута вверх кривая и наоборот, чем больше σ, тем более плоской и растянутой вдоль оси абсцисс становится кривая нормального распределения
Описание слайда:
Этап 6. Проверка соответствия ряда распределения теоретическому Следовательно, кривая нормального распределения может быть построена по двум параметрам – средней арифметической и среднему квадратическому отклонению. Поэтому важно выяснить, как эти параметры влияют на вид нормальной кривой. Если не меняется, а изменяется только σ, то чем меньше σ, тем более вытянута вверх кривая и наоборот, чем больше σ, тем более плоской и растянутой вдоль оси абсцисс становится кривая нормального распределения

Слайд 104





Этап 6. Проверка соответствия ряда распределения теоретическому
Описание слайда:
Этап 6. Проверка соответствия ряда распределения теоретическому

Слайд 105





Этап 6. Проверка соответствия ряда распределения теоретическому
Если σ остается неизменной, а  изменяется, то кривые нормального распределения имеют одинаковую форму, но отличаются друг от друга положением максимальной ординаты (вершины)
Описание слайда:
Этап 6. Проверка соответствия ряда распределения теоретическому Если σ остается неизменной, а изменяется, то кривые нормального распределения имеют одинаковую форму, но отличаются друг от друга положением максимальной ординаты (вершины)

Слайд 106





Этап 6. Проверка соответствия ряда распределения теоретическому
особенности кривой нормального распределения
кривая симметрична и имеет максимум в точке, соответствующей значению    = Ме = Мо;
кривая асимптотически приближается к оси абсцисс, продолжаясь в обе стороны до бесконечности (чем больше отдельные значения X отклоняются от , тем реже они встречаются);
кривая имеет две точки перегиба на расстоянии ± σ от ;
коэффициенты асимметрии и эксцесса равны нулю
Описание слайда:
Этап 6. Проверка соответствия ряда распределения теоретическому особенности кривой нормального распределения кривая симметрична и имеет максимум в точке, соответствующей значению  = Ме = Мо; кривая асимптотически приближается к оси абсцисс, продолжаясь в обе стороны до бесконечности (чем больше отдельные значения X отклоняются от , тем реже они встречаются); кривая имеет две точки перегиба на расстоянии ± σ от ; коэффициенты асимметрии и эксцесса равны нулю

Слайд 107





Этап 6. Проверка соответствия ряда распределения теоретическому
особенности кривой нормального распределения
кривая симметрична и имеет максимум в точке, соответствующей значению    = Ме = Мо;
кривая асимптотически приближается к оси абсцисс, продолжаясь в обе стороны до бесконечности (чем больше отдельные значения X отклоняются от   , тем реже они встречаются);
кривая имеет две точки перегиба на расстоянии ± σ от ;
коэффициенты асимметрии и эксцесса равны нулю
Описание слайда:
Этап 6. Проверка соответствия ряда распределения теоретическому особенности кривой нормального распределения кривая симметрична и имеет максимум в точке, соответствующей значению  = Ме = Мо; кривая асимптотически приближается к оси абсцисс, продолжаясь в обе стороны до бесконечности (чем больше отдельные значения X отклоняются от , тем реже они встречаются); кривая имеет две точки перегиба на расстоянии ± σ от ; коэффициенты асимметрии и эксцесса равны нулю

Слайд 108





Этап 6. Проверка соответствия ряда распределения теоретическому
особенности кривой нормального распределения
кривая симметрична и имеет максимум в точке, соответствующей значению    = Ме = Мо;
кривая асимптотически приближается к оси абсцисс, продолжаясь в обе стороны до бесконечности (чем больше отдельные значения X отклоняются от     , тем реже они встречаются);
кривая имеет две точки перегиба на расстоянии ± σ от    ;
коэффициенты асимметрии и эксцесса равны нулю
Описание слайда:
Этап 6. Проверка соответствия ряда распределения теоретическому особенности кривой нормального распределения кривая симметрична и имеет максимум в точке, соответствующей значению  = Ме = Мо; кривая асимптотически приближается к оси абсцисс, продолжаясь в обе стороны до бесконечности (чем больше отдельные значения X отклоняются от , тем реже они встречаются); кривая имеет две точки перегиба на расстоянии ± σ от ; коэффициенты асимметрии и эксцесса равны нулю

Слайд 109





Этап 6. Проверка соответствия ряда распределения теоретическому
особенности кривой нормального распределения
кривая симметрична и имеет максимум в точке, соответствующей значению    = Ме = Мо;
кривая асимптотически приближается к оси абсцисс, продолжаясь в обе стороны до бесконечности (чем больше отдельные значения X отклоняются от    , тем реже они встречаются);
кривая имеет две точки перегиба на расстоянии ± σ от    ;
коэффициенты асимметрии и эксцесса равны нулю
Описание слайда:
Этап 6. Проверка соответствия ряда распределения теоретическому особенности кривой нормального распределения кривая симметрична и имеет максимум в точке, соответствующей значению  = Ме = Мо; кривая асимптотически приближается к оси абсцисс, продолжаясь в обе стороны до бесконечности (чем больше отдельные значения X отклоняются от , тем реже они встречаются); кривая имеет две точки перегиба на расстоянии ± σ от ; коэффициенты асимметрии и эксцесса равны нулю

Слайд 110





Этап 6. Проверка соответствия ряда распределения теоретическому
Проверка гипотезы о соответствии теоретическому распределению предполагает расчет теоретических частот этого распределения. 
	Для нормального распределения порядок расчета этих частот следующий:
по эмпирическим данным рассчитывают среднюю арифметическую ряда   и среднее квадратическое отклонение σ;
находят нормированное (выраженное в σ) отклонение каждого эмпирического значения от средней арифметической:
Описание слайда:
Этап 6. Проверка соответствия ряда распределения теоретическому Проверка гипотезы о соответствии теоретическому распределению предполагает расчет теоретических частот этого распределения. Для нормального распределения порядок расчета этих частот следующий: по эмпирическим данным рассчитывают среднюю арифметическую ряда и среднее квадратическое отклонение σ; находят нормированное (выраженное в σ) отклонение каждого эмпирического значения от средней арифметической:

Слайд 111





Этап 6. Проверка соответствия ряда распределения теоретическому
по формуле или с помощью таблиц интеграла вероятностей Лапласа находят значение φ(t)
вычисляют теоретические частоты m по формуле:
Описание слайда:
Этап 6. Проверка соответствия ряда распределения теоретическому по формуле или с помощью таблиц интеграла вероятностей Лапласа находят значение φ(t) вычисляют теоретические частоты m по формуле:

Слайд 112





Этап 6. Проверка соответствия ряда распределения теоретическому
Критерии согласия, опираясь на установленный закон распределения, дают возможность установить, когда расхождения между теоретическими и эмпирическими частотами следует признать несущественными (случайными), а когда – существенными (неслучайными). Таким образом, критерии согласия позволяют отвергнуть или подтвердить правильность выдвинутой гипотезы о характере распределения в эмпирическом ряду и дать ответ, можно ли принять для данного эмпирического распределения модель, выраженную некоторым теоретическим законом распределения. 
	Существует ряд критериев согласия, но чаще всего применяют критерии Пирсона χ2, Колмогорова и Романовского.
Описание слайда:
Этап 6. Проверка соответствия ряда распределения теоретическому Критерии согласия, опираясь на установленный закон распределения, дают возможность установить, когда расхождения между теоретическими и эмпирическими частотами следует признать несущественными (случайными), а когда – существенными (неслучайными). Таким образом, критерии согласия позволяют отвергнуть или подтвердить правильность выдвинутой гипотезы о характере распределения в эмпирическом ряду и дать ответ, можно ли принять для данного эмпирического распределения модель, выраженную некоторым теоретическим законом распределения. Существует ряд критериев согласия, но чаще всего применяют критерии Пирсона χ2, Колмогорова и Романовского.

Слайд 113





Этап 6. Проверка соответствия ряда распределения теоретическому
Критерий согласия Пирсона χ2  (хи-квадрат) – один из основных критериев согласия, рассчитываемый по формуле:
k 	– число интервалов;
	 fi	– эмпирическая частота i-го интервала;
	mi 	 – теоретическая частота.
Для распределения χ2 составлены таблицы, где указано критическое значение критерия согласия χ2 для выбранного уровня значимости α и данного числа степеней свободы ν
Описание слайда:
Этап 6. Проверка соответствия ряда распределения теоретическому Критерий согласия Пирсона χ2 (хи-квадрат) – один из основных критериев согласия, рассчитываемый по формуле: k – число интервалов; fi – эмпирическая частота i-го интервала; mi – теоретическая частота. Для распределения χ2 составлены таблицы, где указано критическое значение критерия согласия χ2 для выбранного уровня значимости α и данного числа степеней свободы ν

Слайд 114





Этап 6. Проверка соответствия ряда распределения теоретическому
Уровень значимости α  – это вероятность ошибочного отклонения выдвинутой гипотезы, т.е. вероятность (P) того, что будет отвергнута правильная гипотеза. 
В статистических исследованиях в зависимости от важности и ответственности решаемых задач пользуются следующими тремя уровнями значимости:
α = 0,10, тогда P = 0,90;
α = 0,05, тогда P = 0,95 ;
α = 0,01, тогда P = 0,99.
Практически приемлемая вероятность в экономических исследованиях, означающая, что в 5 случаях из 100 может быть отвергнута правильная гипотеза
Описание слайда:
Этап 6. Проверка соответствия ряда распределения теоретическому Уровень значимости α – это вероятность ошибочного отклонения выдвинутой гипотезы, т.е. вероятность (P) того, что будет отвергнута правильная гипотеза. В статистических исследованиях в зависимости от важности и ответственности решаемых задач пользуются следующими тремя уровнями значимости: α = 0,10, тогда P = 0,90; α = 0,05, тогда P = 0,95 ; α = 0,01, тогда P = 0,99. Практически приемлемая вероятность в экономических исследованиях, означающая, что в 5 случаях из 100 может быть отвергнута правильная гипотеза

Слайд 115





Этап 6. Проверка соответствия ряда распределения теоретическому
Число степеней свободы ν определяется по формуле:
ν = k – z – 1, 	
где 	k 	– число интервалов;
	z	– число параметров, задающих теоретический закон распределения.
Для нормального распределения z = 2, так как нормальное распределение зависит от двух параметров – средней арифметической ( ) и среднего квадратического отклонения (σ).
Описание слайда:
Этап 6. Проверка соответствия ряда распределения теоретическому Число степеней свободы ν определяется по формуле: ν = k – z – 1, где k – число интервалов; z – число параметров, задающих теоретический закон распределения. Для нормального распределения z = 2, так как нормальное распределение зависит от двух параметров – средней арифметической ( ) и среднего квадратического отклонения (σ).

Слайд 116





Этап 6. Проверка соответствия ряда распределения теоретическому
Для оценки существенности расхождений расчетное значение χ2 сравнивают с табличным χ2табл. 
Расчетное значения критерия  должно быть меньше табличного, т.е. χ2<χ2табл, в противном случае расхождения между теоретическим и эмпирическим распределением не случайны, а теоретическое распределение не может служить моделью для изучаемого эмпирического распределения.
Описание слайда:
Этап 6. Проверка соответствия ряда распределения теоретическому Для оценки существенности расхождений расчетное значение χ2 сравнивают с табличным χ2табл. Расчетное значения критерия должно быть меньше табличного, т.е. χ2<χ2табл, в противном случае расхождения между теоретическим и эмпирическим распределением не случайны, а теоретическое распределение не может служить моделью для изучаемого эмпирического распределения.

Слайд 117





Этап 6. Проверка соответствия ряда распределения теоретическому
Использование критерия χ2 рекомендуется для достаточно больших совокупностей (N>50), при этом частота каждой группы не должна быть менее 5, в противном случае повышается вероятность получения ошибочных выводов.
Описание слайда:
Этап 6. Проверка соответствия ряда распределения теоретическому Использование критерия χ2 рекомендуется для достаточно больших совокупностей (N>50), при этом частота каждой группы не должна быть менее 5, в противном случае повышается вероятность получения ошибочных выводов.

Слайд 118





Этап 6. Проверка соответствия ряда распределения теоретическому
Критерий Романовского КР основан на использовании критерия Пирсона χ2, т.е. уже найденных значений χ2 и числа степеней свободы ν, рассчитывается по формуле
Описание слайда:
Этап 6. Проверка соответствия ряда распределения теоретическому Критерий Романовского КР основан на использовании критерия Пирсона χ2, т.е. уже найденных значений χ2 и числа степеней свободы ν, рассчитывается по формуле

Слайд 119





Этап 6. Проверка соответствия ряда распределения теоретическому
Он используется в том случае, когда отсутствует таблица значений χ2. 
Если КР < 3, то расхождения между теоретическим и эмпирическим распределением случайны, если КР > 3, то не случайны, и теоретическое распределение не может служить моделью для изучаемого эмпирического распределения
Описание слайда:
Этап 6. Проверка соответствия ряда распределения теоретическому Он используется в том случае, когда отсутствует таблица значений χ2. Если КР < 3, то расхождения между теоретическим и эмпирическим распределением случайны, если КР > 3, то не случайны, и теоретическое распределение не может служить моделью для изучаемого эмпирического распределения

Слайд 120





Этап 6. Проверка соответствия ряда распределения теоретическому
Критерий Колмогорова λ основан на определении максимального расхождения между накопленными частотами эмпирического и теоретического распределений (D), рассчитывается по формуле
Описание слайда:
Этап 6. Проверка соответствия ряда распределения теоретическому Критерий Колмогорова λ основан на определении максимального расхождения между накопленными частотами эмпирического и теоретического распределений (D), рассчитывается по формуле

Слайд 121





Этап 6. Проверка соответствия ряда распределения теоретическому
Рассчитав значение λ, по таблице P(λ) определяют вероятность, с которой можно утверждать, что отклонения эмпирических частот от теоретических случайны. 
Вероятность P(λ) может изменяться от 0 до 1. При P(λ) = 1 (т.е. при λ < 0,3) происходит полное совпадение частот, при P(λ) = 0 – полное расхождение.
Описание слайда:
Этап 6. Проверка соответствия ряда распределения теоретическому Рассчитав значение λ, по таблице P(λ) определяют вероятность, с которой можно утверждать, что отклонения эмпирических частот от теоретических случайны. Вероятность P(λ) может изменяться от 0 до 1. При P(λ) = 1 (т.е. при λ < 0,3) происходит полное совпадение частот, при P(λ) = 0 – полное расхождение.

Слайд 122





Вывод 
Итак, подтвердив правильность выдвинутой гипотезы с помощью известных критериев согласия, можно использовать результаты распределения для практической деятельности. 
Во-первых, соответствие нормальному закону позволяет прогнозировать, какое число таможенных постов (или их доля) попадет в тот или иной интервал значений величины ВО. 
Во-вторых, нормальное распределение возникает при действии на вариацию изучаемого показателя множества независимых факторов.
 Из чего следует, что нельзя существенно снизить вариацию величины ВО, воздействуя только на один-два управляемых фактора, скажем число работников таможенного поста или степень технической оснащенности.
Описание слайда:
Вывод Итак, подтвердив правильность выдвинутой гипотезы с помощью известных критериев согласия, можно использовать результаты распределения для практической деятельности. Во-первых, соответствие нормальному закону позволяет прогнозировать, какое число таможенных постов (или их доля) попадет в тот или иной интервал значений величины ВО. Во-вторых, нормальное распределение возникает при действии на вариацию изучаемого показателя множества независимых факторов. Из чего следует, что нельзя существенно снизить вариацию величины ВО, воздействуя только на один-два управляемых фактора, скажем число работников таможенного поста или степень технической оснащенности.



Похожие презентации
Mypresentation.ru
Загрузить презентацию