🗊Презентация Управление многономенклатурными запасами

Категория: Менеджмент
Нажмите для полного просмотра!
Управление многономенклатурными запасами, слайд №1Управление многономенклатурными запасами, слайд №2Управление многономенклатурными запасами, слайд №3Управление многономенклатурными запасами, слайд №4Управление многономенклатурными запасами, слайд №5Управление многономенклатурными запасами, слайд №6Управление многономенклатурными запасами, слайд №7Управление многономенклатурными запасами, слайд №8Управление многономенклатурными запасами, слайд №9Управление многономенклатурными запасами, слайд №10Управление многономенклатурными запасами, слайд №11Управление многономенклатурными запасами, слайд №12Управление многономенклатурными запасами, слайд №13Управление многономенклатурными запасами, слайд №14Управление многономенклатурными запасами, слайд №15Управление многономенклатурными запасами, слайд №16Управление многономенклатурными запасами, слайд №17Управление многономенклатурными запасами, слайд №18Управление многономенклатурными запасами, слайд №19Управление многономенклатурными запасами, слайд №20Управление многономенклатурными запасами, слайд №21Управление многономенклатурными запасами, слайд №22Управление многономенклатурными запасами, слайд №23

Содержание

Вы можете ознакомиться и скачать презентацию на тему Управление многономенклатурными запасами. Доклад-сообщение содержит 23 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Управление многономенклатурными запасами
Описание слайда:
Управление многономенклатурными запасами

Слайд 2





Введение
Складские системы промышленных предприятий содержат от нескольких десятков до нескольких тысяч номенклатур.
 Следовательно, возникает необходимость рассмотрения задач управления многономенклатурными запасами. 
Многие специалисты придерживаются мнения, что оптимизация должна проводиться лишь по 5-10% номенклатур, суммарная потребность в которых в стоимостном выражении составляет 60-70%.
Описание слайда:
Введение Складские системы промышленных предприятий содержат от нескольких десятков до нескольких тысяч номенклатур. Следовательно, возникает необходимость рассмотрения задач управления многономенклатурными запасами. Многие специалисты придерживаются мнения, что оптимизация должна проводиться лишь по 5-10% номенклатур, суммарная потребность в которых в стоимостном выражении составляет 60-70%.

Слайд 3





ПОСТАНОВКА ЗАДАЧИ
Пусть  имеется  N  товаров,  для  товара i, (i = 1, 2, ..., N): 
νi   -  спрос  в единицу  времени, 
K i   – издержки  заказа,   
h i   –  издержки  хранения  в  единицу времени, 
Qi   –  объем  заказа, 
t i   –  период.  
Предположим: горизонт планирования бесконечен, дефицит не допускается. 
Определить размеры партий Qi, и периодичности заказов t i, при которых суммарные затраты на управление запасами были бы минимальными.
Описание слайда:
ПОСТАНОВКА ЗАДАЧИ Пусть имеется N товаров, для товара i, (i = 1, 2, ..., N): νi - спрос в единицу времени, K i – издержки заказа, h i – издержки хранения в единицу времени, Qi – объем заказа, t i – период. Предположим: горизонт планирования бесконечен, дефицит не допускается. Определить размеры партий Qi, и периодичности заказов t i, при которых суммарные затраты на управление запасами были бы минимальными.

Слайд 4





Раздельная оптимизация
При отсутствии взаимодействия между запасами различных видов продукции затраты L в единицу времени для системы, включающей N видов хранимой продукции, вычисляются по формуле 
Откуда, используя необходимый признак экстремума, находим
Минимальные издержки в единицу времени составляют
Описание слайда:
Раздельная оптимизация При отсутствии взаимодействия между запасами различных видов продукции затраты L в единицу времени для системы, включающей N видов хранимой продукции, вычисляются по формуле Откуда, используя необходимый признак экстремума, находим Минимальные издержки в единицу времени составляют

Слайд 5





Раздельная оптимизация:
ограничения
Между N видами продукции, поставляемой на склад, возникают взаимосвязи, основными причинами являются следующие ограничения: 
площадь (объем) склада f, где размещаются одновременно N видов продукции; 
максимальный размер капитала C, который предполагается вложить в запасы; 
верхний предел общего числа заказов за определенный период 
и др.
Могут возникнуть ситуации, когда требуется соблюдение нескольких из ограничений или всех одновременно.
Описание слайда:
Раздельная оптимизация: ограничения Между N видами продукции, поставляемой на склад, возникают взаимосвязи, основными причинами являются следующие ограничения: площадь (объем) склада f, где размещаются одновременно N видов продукции; максимальный размер капитала C, который предполагается вложить в запасы; верхний предел общего числа заказов за определенный период и др. Могут возникнуть ситуации, когда требуется соблюдение нескольких из ограничений или всех одновременно.

Слайд 6





Раздельная оптимизация
ограничения на площадь склада
Пусть общая складская площадь ограничена величиной f. Ограничение на складские площади имеет вид: 
где fi – площадь, необходимая для хранения единицы i-го вида продукции, Qi – величина партии i-го вида продукции.
Вводится нормировочный множитель g для учета того, что  запасы отдельных номенклатур могут поступать независимо друг от друга. 
Если запасы всех номенклатур пополняются одновременно, то в это время запас и занятая им площадь оказываются максимальными и g=1. 
Полагая g = 1/2, допускаем, что запасы всех видов продукции пополняются в разное время, а уровень запасов и занятая ими площадь являются средними. Маловероятно, что занятая площадь окажется много меньше половины имеющейся, поэтому 1/2  ≤ g ≤ 1.
Описание слайда:
Раздельная оптимизация ограничения на площадь склада Пусть общая складская площадь ограничена величиной f. Ограничение на складские площади имеет вид: где fi – площадь, необходимая для хранения единицы i-го вида продукции, Qi – величина партии i-го вида продукции. Вводится нормировочный множитель g для учета того, что запасы отдельных номенклатур могут поступать независимо друг от друга. Если запасы всех номенклатур пополняются одновременно, то в это время запас и занятая им площадь оказываются максимальными и g=1. Полагая g = 1/2, допускаем, что запасы всех видов продукции пополняются в разное время, а уровень запасов и занятая ими площадь являются средними. Маловероятно, что занятая площадь окажется много меньше половины имеющейся, поэтому 1/2 ≤ g ≤ 1.

Слайд 7





Раздельная оптимизация
ограничения на площадь склада
Для определения экстремума функции издержек при наличии ограничения применим метод множителей Лагранжа. Функция Лагранжа:
Продифференцируем эту функцию по неизвестным параметрам Qi  и ,  и приравняем частные производные к нулю
Получаем систему из N + 1 уравнения с N + 1 неизвестной
Описание слайда:
Раздельная оптимизация ограничения на площадь склада Для определения экстремума функции издержек при наличии ограничения применим метод множителей Лагранжа. Функция Лагранжа: Продифференцируем эту функцию по неизвестным параметрам Qi и , и приравняем частные производные к нулю Получаем систему из N + 1 уравнения с N + 1 неизвестной

Слайд 8





Раздельная оптимизация
ограничения на площадь склада
Экономический смысл множителя Лагранжа  : 
   он показывает, насколько можно сократить минимальные издержки функционирования системы в единицу времени, увеличив складские площади на единицу.
Описание слайда:
Раздельная оптимизация ограничения на площадь склада Экономический смысл множителя Лагранжа  : он показывает, насколько можно сократить минимальные издержки функционирования системы в единицу времени, увеличив складские площади на единицу.

Слайд 9





Раздельная оптимизация
ограничения на величину оборотных средств
Аналогично решается задача, если ограничения накладываются на величину оборотных средств C, вложенных в запасы. 
Пусть ci - стоимость единицы продукции i-го вида, тогда ограничение имеет вид:
Нормировочный множитель g имеет тот же смысл, что и в предыдущей постановке задачи.
Решая с помощью метода множителей Лагранжа, приходим к следующей системе для решения задачи
Описание слайда:
Раздельная оптимизация ограничения на величину оборотных средств Аналогично решается задача, если ограничения накладываются на величину оборотных средств C, вложенных в запасы. Пусть ci - стоимость единицы продукции i-го вида, тогда ограничение имеет вид: Нормировочный множитель g имеет тот же смысл, что и в предыдущей постановке задачи. Решая с помощью метода множителей Лагранжа, приходим к следующей системе для решения задачи

Слайд 10





Экономический смысл множителя Лагранжа  : 
Экономический смысл множителя Лагранжа  : 
   он показывает, на сколько денежных единиц уменьшатся затраты в системе, если оборотные средства увеличатся на одну денежную единицу.
Описание слайда:
Экономический смысл множителя Лагранжа  : Экономический смысл множителя Лагранжа  : он показывает, на сколько денежных единиц уменьшатся затраты в системе, если оборотные средства увеличатся на одну денежную единицу.

Слайд 11





Для определения оптимального размера партии поставок нужно определить множитель Лагранжа 
Для определения оптимального размера партии поставок нужно определить множитель Лагранжа 
Варианты: 
наиболее распространенный, базируется на численном методе решения (методом дихотомии, золотого сечения, Фибоначчи). 
в качестве первого приближения  взять эмпирическую зависимость.
Описание слайда:
Для определения оптимального размера партии поставок нужно определить множитель Лагранжа  Для определения оптимального размера партии поставок нужно определить множитель Лагранжа  Варианты: наиболее распространенный, базируется на численном методе решения (методом дихотомии, золотого сечения, Фибоначчи). в качестве первого приближения  взять эмпирическую зависимость.

Слайд 12





Замечание:
При наличии дополнительных ограничений наблюдается существенный рост переменных затрат: затраты, связанные с выполнением заказов, существенно возрастают из-за: 
уменьшения объема заказов 
и роста их количества.
Описание слайда:
Замечание: При наличии дополнительных ограничений наблюдается существенный рост переменных затрат: затраты, связанные с выполнением заказов, существенно возрастают из-за: уменьшения объема заказов и роста их количества.

Слайд 13





Когда у одного поставщика имеется N номенклатур, возможна их одновременная поставка. 
Когда у одного поставщика имеется N номенклатур, возможна их одновременная поставка. 
Причины: 
· требование поставщика о стоимости каждого заказа не ниже некоторой предельной величины; 
· реализация полной загрузки используемых транспортных средств; 
· ограничение количества отправок и их периодичности каждому клиенту (синхронизация поставок);
· снижение затрат на организацию, комплектацию партий поставок, поставляемых клиенту.
Описание слайда:
Когда у одного поставщика имеется N номенклатур, возможна их одновременная поставка. Когда у одного поставщика имеется N номенклатур, возможна их одновременная поставка. Причины: · требование поставщика о стоимости каждого заказа не ниже некоторой предельной величины; · реализация полной загрузки используемых транспортных средств; · ограничение количества отправок и их периодичности каждому клиенту (синхронизация поставок); · снижение затрат на организацию, комплектацию партий поставок, поставляемых клиенту.

Слайд 14





Полное совмещение заказов
Суммарные издержки одновременного размещения N заказов считают равными 

 где Ко - фиксированные издержки, не зависящие от числа номенклатур, а γ (0 ≤ γ ≤1) - доля издержек заказывания, связанная с размещением заказа по каждой номенклатуре. Период размещения заказа t по всем номенклатурам будет общим. 
Издержки размещения заказов и содержание запасов в единицу времени
Описание слайда:
Полное совмещение заказов Суммарные издержки одновременного размещения N заказов считают равными где Ко - фиксированные издержки, не зависящие от числа номенклатур, а γ (0 ≤ γ ≤1) - доля издержек заказывания, связанная с размещением заказа по каждой номенклатуре. Период размещения заказа t по всем номенклатурам будет общим. Издержки размещения заказов и содержание запасов в единицу времени

Слайд 15





Полное совмещение заказов
Получаем оптимальные значения параметров:
Описание слайда:
Полное совмещение заказов Получаем оптимальные значения параметров:

Слайд 16





Полное совмещение заказов
ограничения на площадь склада
С учетом того, что Qi=tvi, ограничение по складским площадям имеет вид
В случае одного ограничения задача решается по следующей схеме. Определяется t0 по формуле (1).  Если t0  удовлетворяет ограничению, то t* = t 0, иначе t* должно превратить ограничение в строгое равенство, тогда оптимальный период возобновления поставок
Описание слайда:
Полное совмещение заказов ограничения на площадь склада С учетом того, что Qi=tvi, ограничение по складским площадям имеет вид В случае одного ограничения задача решается по следующей схеме. Определяется t0 по формуле (1). Если t0 удовлетворяет ограничению, то t* = t 0, иначе t* должно превратить ограничение в строгое равенство, тогда оптимальный период возобновления поставок

Слайд 17





Полное совмещение заказов
ограничения на величину оборотных средств
С учетом того, что Qi=tvi, ограничение по оборотным средствам имеет вид
В случае одного ограничения задача решается по следующей схеме. Определяется t0 по формуле (1).  Если t0  удовлетворяет ограничению, то t* = t 0, иначе t* должно превратить ограничение в строгое равенство, тогда оптимальный период возобновления поставок
Описание слайда:
Полное совмещение заказов ограничения на величину оборотных средств С учетом того, что Qi=tvi, ограничение по оборотным средствам имеет вид В случае одного ограничения задача решается по следующей схеме. Определяется t0 по формуле (1). Если t0 удовлетворяет ограничению, то t* = t 0, иначе t* должно превратить ограничение в строгое равенство, тогда оптимальный период возобновления поставок

Слайд 18





Полное совмещение заказов:
ограничения
Если другие ограничения – схема та же. 
Если ограничений несколько, за период поставки принимается наименьший из периодов поставки, рассчитанный по ограничениям.
Описание слайда:
Полное совмещение заказов: ограничения Если другие ограничения – схема та же. Если ограничений несколько, за период поставки принимается наименьший из периодов поставки, рассчитанный по ограничениям.

Слайд 19





Частичное совмещение заказов
Многономенклатурная поставка от одного поставщика. 
Две составляющие затрат за поставку: постоянная  (определяемая главным образом стоимостью транспортировки) и переменная, зависящая от объема выполняемых на складе операций при формировании заказа.
Тогда для каждой i-й номенклатуры затраты, связанные с организацией одной поставки, будут определяться по формуле
Описание слайда:
Частичное совмещение заказов Многономенклатурная поставка от одного поставщика. Две составляющие затрат за поставку: постоянная (определяемая главным образом стоимостью транспортировки) и переменная, зависящая от объема выполняемых на складе операций при формировании заказа. Тогда для каждой i-й номенклатуры затраты, связанные с организацией одной поставки, будут определяться по формуле

Слайд 20





Многономенклатурные поставки по системе кратных периодов.
Многономенклатурные поставки по системе кратных периодов.
Стратегия организации поставок, состоящая в объединении преимуществ, свойственных независимым поставкам с оптимальными периодичностями ti* и многономенклатурными поставками с периодичностью t*. 
Вводится система кратных периодов, когда по крайней мере одна номенклатура заказывается в каждом базисном периоде t*, а остальные позиции номенклатуры поставляются с периодичностями kit* (ki = 1,2,3,…).
Оптимальный период группирования определяется по формуле
Данному периоду соответствуют минимальные затраты:
Описание слайда:
Многономенклатурные поставки по системе кратных периодов. Многономенклатурные поставки по системе кратных периодов. Стратегия организации поставок, состоящая в объединении преимуществ, свойственных независимым поставкам с оптимальными периодичностями ti* и многономенклатурными поставками с периодичностью t*. Вводится система кратных периодов, когда по крайней мере одна номенклатура заказывается в каждом базисном периоде t*, а остальные позиции номенклатуры поставляются с периодичностями kit* (ki = 1,2,3,…). Оптимальный период группирования определяется по формуле Данному периоду соответствуют минимальные затраты:

Слайд 21





Основные этапы алгоритма поиска конфигурации группировок позиций номенклатуры.
Основные этапы алгоритма поиска конфигурации группировок позиций номенклатуры.
1. Позиции номенклатуры ранжируются по возрастанию периодичности независимой поставки каждой позиции номенклатуры ti*. 
2. Выбирается начальное приближение для кратного периода; за основу принимается первое значение ранжированного ряда t0*. 
3. Рассчитывается набор коэффициентов ki = ti*/ t0*          с помощью которых производится формирование базового варианта групп различной кратности. 
4. Каждая позиция номенклатуры закрепляется за определенной группой.
Описание слайда:
Основные этапы алгоритма поиска конфигурации группировок позиций номенклатуры. Основные этапы алгоритма поиска конфигурации группировок позиций номенклатуры. 1. Позиции номенклатуры ранжируются по возрастанию периодичности независимой поставки каждой позиции номенклатуры ti*. 2. Выбирается начальное приближение для кратного периода; за основу принимается первое значение ранжированного ряда t0*. 3. Рассчитывается набор коэффициентов ki = ti*/ t0* с помощью которых производится формирование базового варианта групп различной кратности. 4. Каждая позиция номенклатуры закрепляется за определенной группой.

Слайд 22





Для базового варианта рассчитываются показатели t*Г и L*Г  и затем с использованием итерационной процедуры (путем перебора и размещения позиций номенклатуры в группах различной кратности) осуществляется поиск оптимального варианта по критерию минимума суммарных затрат L*Г.
Для базового варианта рассчитываются показатели t*Г и L*Г  и затем с использованием итерационной процедуры (путем перебора и размещения позиций номенклатуры в группах различной кратности) осуществляется поиск оптимального варианта по критерию минимума суммарных затрат L*Г.
Накапливаем первую группу: присоединяем следующие позиции номенклатуры
Условие прекращения накопления группы записывается в виде
Проверка рекуррентного соотношения начинается со второй позиции номенклатуры.
Для всех последующих (не входящих в первую группу) позиций i > j вычисляется оптимальная периодичность ti* и по отношению ti*/ t0* - начальная кратность.
Описание слайда:
Для базового варианта рассчитываются показатели t*Г и L*Г и затем с использованием итерационной процедуры (путем перебора и размещения позиций номенклатуры в группах различной кратности) осуществляется поиск оптимального варианта по критерию минимума суммарных затрат L*Г. Для базового варианта рассчитываются показатели t*Г и L*Г и затем с использованием итерационной процедуры (путем перебора и размещения позиций номенклатуры в группах различной кратности) осуществляется поиск оптимального варианта по критерию минимума суммарных затрат L*Г. Накапливаем первую группу: присоединяем следующие позиции номенклатуры Условие прекращения накопления группы записывается в виде Проверка рекуррентного соотношения начинается со второй позиции номенклатуры. Для всех последующих (не входящих в первую группу) позиций i > j вычисляется оптимальная периодичность ti* и по отношению ti*/ t0* - начальная кратность.

Слайд 23





Замечания:
Замечания:
- Наличие оптимальной величины общих затрат является областью принятия стратегических компромиссных решений различных служб предприятия, отвечающих за закупку, транспортировку и хранение продукции. 
- Дальнейшее развитие методов решения многономенклатурных задач требует активного привлечения финансовой логистики, т. е. аналитическогo инструментария исследования динамики финансовых потоков.
Описание слайда:
Замечания: Замечания: - Наличие оптимальной величины общих затрат является областью принятия стратегических компромиссных решений различных служб предприятия, отвечающих за закупку, транспортировку и хранение продукции. - Дальнейшее развитие методов решения многономенклатурных задач требует активного привлечения финансовой логистики, т. е. аналитическогo инструментария исследования динамики финансовых потоков.



Похожие презентации
Mypresentation.ru
Загрузить презентацию