🗊Презентация Управляемый термоядерный синтез

Категория: Физика
Нажмите для полного просмотра!
Управляемый термоядерный синтез, слайд №1Управляемый термоядерный синтез, слайд №2Управляемый термоядерный синтез, слайд №3Управляемый термоядерный синтез, слайд №4Управляемый термоядерный синтез, слайд №5Управляемый термоядерный синтез, слайд №6Управляемый термоядерный синтез, слайд №7Управляемый термоядерный синтез, слайд №8Управляемый термоядерный синтез, слайд №9Управляемый термоядерный синтез, слайд №10Управляемый термоядерный синтез, слайд №11

Вы можете ознакомиться и скачать презентацию на тему Управляемый термоядерный синтез. Доклад-сообщение содержит 11 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





«Управляемый термоядерный синтез»
Описание слайда:
«Управляемый термоядерный синтез»

Слайд 2





УТС
Управляемый термоядерный синтез — синтез более тяжёлых атомных ядер из более лёгких с целью получения энергии, который, в отличие от взрывного термоядерного синтеза (используемого в термоядерных взрывных устройствах), носит управляемый характер. Управляемый термоядерный синтез отличается от традиционной ядерной энергетики тем, что в последней используется реакция распада, в ходе которой из тяжёлых ядер получаются более лёгкие ядра. В основных ядерных реакциях, которые планируется использовать в целях осуществления управляемого термоядерного синтеза, будут применяться дейтерий           и тритий            , а в более отдалённой перспективе гелий-3          и бор-11.
Описание слайда:
УТС Управляемый термоядерный синтез — синтез более тяжёлых атомных ядер из более лёгких с целью получения энергии, который, в отличие от взрывного термоядерного синтеза (используемого в термоядерных взрывных устройствах), носит управляемый характер. Управляемый термоядерный синтез отличается от традиционной ядерной энергетики тем, что в последней используется реакция распада, в ходе которой из тяжёлых ядер получаются более лёгкие ядра. В основных ядерных реакциях, которые планируется использовать в целях осуществления управляемого термоядерного синтеза, будут применяться дейтерий и тритий , а в более отдалённой перспективе гелий-3 и бор-11.

Слайд 3





УТС
Впервые задачу по управляемому термоядерному синтезу в Советском Союзе сформулировал и предложил для неё некоторое конструктивное решение советский физик Лаврентьев О. А. Кроме него важный вклад в решение проблемы внесли такие выдающиеся физики, как А. Д. Сахаров и И. Е. Тамм, а также Л. А. Арцимович, возглавлявший советскую программу по управляемому термоядерному синтезу с 1951 года.
Исторически вопрос управляемого термоядерного синтеза на мировом уровне возник в середине XX века. Известно, что И. В. Курчатов в 1956 году высказал предложение о сотрудничестве учёных-атомщиков разных стран в решении этой научной проблемы. Это произошло во время посещения Британского ядерного центра «Харуэлл»
Описание слайда:
УТС Впервые задачу по управляемому термоядерному синтезу в Советском Союзе сформулировал и предложил для неё некоторое конструктивное решение советский физик Лаврентьев О. А. Кроме него важный вклад в решение проблемы внесли такие выдающиеся физики, как А. Д. Сахаров и И. Е. Тамм, а также Л. А. Арцимович, возглавлявший советскую программу по управляемому термоядерному синтезу с 1951 года. Исторически вопрос управляемого термоядерного синтеза на мировом уровне возник в середине XX века. Известно, что И. В. Курчатов в 1956 году высказал предложение о сотрудничестве учёных-атомщиков разных стран в решении этой научной проблемы. Это произошло во время посещения Британского ядерного центра «Харуэлл»

Слайд 4





УТС
     Чтобы с помощью ядерною синтеза получить полезную энергию, термоядерные реакции должны быть управляемыми. Необходимо найти способы создания и поддержания температур во много миллионов градусов. Одна из технических проблем связана с тем, что высокотемпературный газ, или плазму, нужно удерживать таким образом, чтобы не расплавились стенки соответствующего объема. На решение этой технической задачи уже затрачены и затрачиваются огромные усилия. Плазму пытаются изолировать от стенок с помощью сильных магнитных полей. Задача заключается в том, чтобы удержать плазму в изолированном состоянии в течение достаточно продолжительного времени и при этом выработать мощность, превышающую ту, которая была затрачена на запуск термоядерного реактора.
Описание слайда:
УТС Чтобы с помощью ядерною синтеза получить полезную энергию, термоядерные реакции должны быть управляемыми. Необходимо найти способы создания и поддержания температур во много миллионов градусов. Одна из технических проблем связана с тем, что высокотемпературный газ, или плазму, нужно удерживать таким образом, чтобы не расплавились стенки соответствующего объема. На решение этой технической задачи уже затрачены и затрачиваются огромные усилия. Плазму пытаются изолировать от стенок с помощью сильных магнитных полей. Задача заключается в том, чтобы удержать плазму в изолированном состоянии в течение достаточно продолжительного времени и при этом выработать мощность, превышающую ту, которая была затрачена на запуск термоядерного реактора.

Слайд 5





УТС
На рисунке показана предполагаемая схема конструкции реактора.
Описание слайда:
УТС На рисунке показана предполагаемая схема конструкции реактора.

Слайд 6





УТС
Электростанция, работающая  на термоядерной  реакции, из-за  отсутствия в ней продуктов деления должна иметь значительно меньшую радиоактивность по сравнению с ядерными реакторами. Однако в термоядерных  установках  испускается,  а  затем  захватывается  большое число нейтронов, что, как правило, приводит к образованию радиоактивных  изотопов.  Поэтому  вокруг  камеры  с  плазмой  предполагается создавать оболочку («бланкет») из лития. И в этом случае нейтроны будут производить тритий (изотоп водорода      с периодом полураспада 12 лет), который можно использовать в дальнейшем как горючее.
Описание слайда:
УТС Электростанция, работающая на термоядерной реакции, из-за отсутствия в ней продуктов деления должна иметь значительно меньшую радиоактивность по сравнению с ядерными реакторами. Однако в термоядерных установках испускается, а затем захватывается большое число нейтронов, что, как правило, приводит к образованию радиоактивных изотопов. Поэтому вокруг камеры с плазмой предполагается создавать оболочку («бланкет») из лития. И в этом случае нейтроны будут производить тритий (изотоп водорода с периодом полураспада 12 лет), который можно использовать в дальнейшем как горючее.

Слайд 7





УТС
В настоящее время, в рамках осуществления мировой термоядерной программы, интенсивно разрабатываются новейшие системы типа токамак.  На рисунке изображена схема токамака: 1 – первичная обмотка трансформатора; 2 – катушки тороидального магнитного поля; 3 – лайнер, тонкостенная внутренняя камера для выравнивания тороидального электрического поля; 4 – катушки тороидального магнитного поля; 5 – вакуумная камера; 6 – железный сердечник (магнитопровод).
Описание слайда:
УТС В настоящее время, в рамках осуществления мировой термоядерной программы, интенсивно разрабатываются новейшие системы типа токамак. На рисунке изображена схема токамака: 1 – первичная обмотка трансформатора; 2 – катушки тороидального магнитного поля; 3 – лайнер, тонкостенная внутренняя камера для выравнивания тороидального электрического поля; 4 – катушки тороидального магнитного поля; 5 – вакуумная камера; 6 – железный сердечник (магнитопровод).

Слайд 8





УТС
Первый  Российский  сферический  токамак « Глобус-М»  создан  в Санкт Петербурге под руководством Ж.И. Алферова. Планируется создание крупного токамака ТМ-15, для исследования управления конфигурацией  плазмы.  Начато  сооружение  Казахстанского  токамака  КТМ для  отработки технологий  термоядерной  энергетики.
Описание слайда:
УТС Первый Российский сферический токамак « Глобус-М» создан в Санкт Петербурге под руководством Ж.И. Алферова. Планируется создание крупного токамака ТМ-15, для исследования управления конфигурацией плазмы. Начато сооружение Казахстанского токамака КТМ для отработки технологий термоядерной энергетики.

Слайд 9





УТС
На рисунке приведена схема токамака КТМ в сечении и его вид с вакуумной камерой.
Описание слайда:
УТС На рисунке приведена схема токамака КТМ в сечении и его вид с вакуумной камерой.

Слайд 10





УТС
Идея  лазерного  термоядерного  синтеза заключается в  облучении лазерным излучением небольшой сферической оболочки, заполненной газообразным или твердым топливом (рисунок на 5 слайде). Под действием излучения материал оболочки 1 испаряется и создает реактивные силы, способные сжать оболочку и содержащуюся в ней реагирующую смесь 2 и 3. Параллельно с лазерами, в 60-ые гг. развивались и другие мощные драйверы  −  ионные  и  электронные  пучки,  которые  также  могли  бы обеспечивать требуемые мощности на поверхности мишеней. Были разработаны импульсные системы питания, способные создавать и подводить к мишеням энергию 1−10 МДж за        с, т.е. получать пиковые мощности на уровне         Вт. Появление новой технологии повлекло за собой интенсивные исследования физики взаимодействия мощного излучения и пучков частиц с твердым телом и привело к разработке термоядерных мишеней, способных давать положительный выход энергии.
Описание слайда:
УТС Идея лазерного термоядерного синтеза заключается в облучении лазерным излучением небольшой сферической оболочки, заполненной газообразным или твердым топливом (рисунок на 5 слайде). Под действием излучения материал оболочки 1 испаряется и создает реактивные силы, способные сжать оболочку и содержащуюся в ней реагирующую смесь 2 и 3. Параллельно с лазерами, в 60-ые гг. развивались и другие мощные драйверы − ионные и электронные пучки, которые также могли бы обеспечивать требуемые мощности на поверхности мишеней. Были разработаны импульсные системы питания, способные создавать и подводить к мишеням энергию 1−10 МДж за с, т.е. получать пиковые мощности на уровне Вт. Появление новой технологии повлекло за собой интенсивные исследования физики взаимодействия мощного излучения и пучков частиц с твердым телом и привело к разработке термоядерных мишеней, способных давать положительный выход энергии.

Слайд 11





УТС
В природе существует еще один механизм  удержания, обеспечивающий непрерывное выделение термоядерной энергии, − это гравитационное удержание. Однако чтобы обеспечить достаточно сильное гравитационное поле, потребуется масса порядка солнечной (источниками энергии в звездах, безусловно, являются термоядерные реакции).
Описание слайда:
УТС В природе существует еще один механизм удержания, обеспечивающий непрерывное выделение термоядерной энергии, − это гравитационное удержание. Однако чтобы обеспечить достаточно сильное гравитационное поле, потребуется масса порядка солнечной (источниками энергии в звездах, безусловно, являются термоядерные реакции).



Похожие презентации
Mypresentation.ru
Загрузить презентацию