🗊Презентация Валы и подшипники. Подшипники качения (ПК)

Категория: Машиностроение
Нажмите для полного просмотра!
Валы и подшипники. Подшипники качения (ПК), слайд №1Валы и подшипники. Подшипники качения (ПК), слайд №2Валы и подшипники. Подшипники качения (ПК), слайд №3Валы и подшипники. Подшипники качения (ПК), слайд №4Валы и подшипники. Подшипники качения (ПК), слайд №5Валы и подшипники. Подшипники качения (ПК), слайд №6Валы и подшипники. Подшипники качения (ПК), слайд №7Валы и подшипники. Подшипники качения (ПК), слайд №8Валы и подшипники. Подшипники качения (ПК), слайд №9Валы и подшипники. Подшипники качения (ПК), слайд №10Валы и подшипники. Подшипники качения (ПК), слайд №11Валы и подшипники. Подшипники качения (ПК), слайд №12Валы и подшипники. Подшипники качения (ПК), слайд №13Валы и подшипники. Подшипники качения (ПК), слайд №14Валы и подшипники. Подшипники качения (ПК), слайд №15Валы и подшипники. Подшипники качения (ПК), слайд №16Валы и подшипники. Подшипники качения (ПК), слайд №17Валы и подшипники. Подшипники качения (ПК), слайд №18

Вы можете ознакомиться и скачать презентацию на тему Валы и подшипники. Подшипники качения (ПК). Доклад-сообщение содержит 18 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1


Валы и подшипники. Подшипники качения (ПК), слайд №1
Описание слайда:

Слайд 2


Валы и подшипники. Подшипники качения (ПК), слайд №2
Описание слайда:

Слайд 3


Валы и подшипники. Подшипники качения (ПК), слайд №3
Описание слайда:

Слайд 4


Валы и подшипники. Подшипники качения (ПК), слайд №4
Описание слайда:

Слайд 5


Валы и подшипники. Подшипники качения (ПК), слайд №5
Описание слайда:

Слайд 6


Валы и подшипники. Подшипники качения (ПК), слайд №6
Описание слайда:

Слайд 7


Валы и подшипники. Подшипники качения (ПК), слайд №7
Описание слайда:

Слайд 8





	Пятая и шестая цифры отведены для обозначения конструктивной разновидности подшипника.
	Пятая и шестая цифры отведены для обозначения конструктивной разновидности подшипника.
Седьмой цифрой обозначается серия ширин (цифры от 0 до 9), лёгкой серии обычно соответствует 0 или 1.
Материалы для изготовления подшипников качения. Кольца и тела качения (шарики, ролики) подшипников качения изготавливают из специальных высокохромистых легированных сталей (ШХ15, ШХ15СГ, ШХ20СГ, 20ХН4А и др.) с улучшающей термообработкой до HRC 61…67 при неоднородности твёрдости не более 3 HRC для каждого из колец и для всех тел качения. Сепараторы чаще всего выполняют штампованными из стальной (мягкая малоуглеродистая сталь) ленты. Сепараторы скоростных подшипников делают из антифрикционных материалов (латуни, бронзы, алюминиевых сплавов, текстолита и других пластмасс).
Описание слайда:
Пятая и шестая цифры отведены для обозначения конструктивной разновидности подшипника. Пятая и шестая цифры отведены для обозначения конструктивной разновидности подшипника. Седьмой цифрой обозначается серия ширин (цифры от 0 до 9), лёгкой серии обычно соответствует 0 или 1. Материалы для изготовления подшипников качения. Кольца и тела качения (шарики, ролики) подшипников качения изготавливают из специальных высокохромистых легированных сталей (ШХ15, ШХ15СГ, ШХ20СГ, 20ХН4А и др.) с улучшающей термообработкой до HRC 61…67 при неоднородности твёрдости не более 3 HRC для каждого из колец и для всех тел качения. Сепараторы чаще всего выполняют штампованными из стальной (мягкая малоуглеродистая сталь) ленты. Сепараторы скоростных подшипников делают из антифрикционных материалов (латуни, бронзы, алюминиевых сплавов, текстолита и других пластмасс).

Слайд 9


Валы и подшипники. Подшипники качения (ПК), слайд №9
Описание слайда:

Слайд 10


Валы и подшипники. Подшипники качения (ПК), слайд №10
Описание слайда:

Слайд 11


Валы и подшипники. Подшипники качения (ПК), слайд №11
Описание слайда:

Слайд 12





Эквивалентная нагрузка RE подшипника качения может быть вычислена по выражению
Эквивалентная нагрузка RE подшипника качения может быть вычислена по выражению
;				(11.1)
где Fr и Fa – радиальная и осевая составляющие нагрузки, действующей на вращающееся кольцо подшипника, X и Y – коэффициенты влияния радиальной и осевой нагрузок, соответственно; V – коэффициент вращающегося кольца (если относительно действующей нагрузки вращается внутреннее кольцо, то V = 1, если наружное  V = 1,2); KБ – динамический коэффициент безопасности, учитывающий действие динамических перегрузок на долговечность подшипника (для редукторов общего применения KБ= 1,3…1,5); KT– коэффициент, учитывающий влияние температуры подшипникового узла на долговечность подшипника. При рабочей температуре подшипникового узла t  100 C, принимают KT = 1, а для температур 100 < t  250 C температурный коэффициент можно определить по эмпирической зависимости
.				(11.2)
Для радиальных подшипников, не воспринимающих осевую нагрузку (например, для роликовых цилиндрических), Fa = 0 и X = 1; для упорных – Fr = 0 и Y = 1. Для остальных подшипников в стандарте указывается величина «e», зависящая в основном от угла наклона беговой дорожки к оси вращения.
Описание слайда:
Эквивалентная нагрузка RE подшипника качения может быть вычислена по выражению Эквивалентная нагрузка RE подшипника качения может быть вычислена по выражению ; (11.1) где Fr и Fa – радиальная и осевая составляющие нагрузки, действующей на вращающееся кольцо подшипника, X и Y – коэффициенты влияния радиальной и осевой нагрузок, соответственно; V – коэффициент вращающегося кольца (если относительно действующей нагрузки вращается внутреннее кольцо, то V = 1, если наружное  V = 1,2); KБ – динамический коэффициент безопасности, учитывающий действие динамических перегрузок на долговечность подшипника (для редукторов общего применения KБ= 1,3…1,5); KT– коэффициент, учитывающий влияние температуры подшипникового узла на долговечность подшипника. При рабочей температуре подшипникового узла t  100 C, принимают KT = 1, а для температур 100 < t  250 C температурный коэффициент можно определить по эмпирической зависимости . (11.2) Для радиальных подшипников, не воспринимающих осевую нагрузку (например, для роликовых цилиндрических), Fa = 0 и X = 1; для упорных – Fr = 0 и Y = 1. Для остальных подшипников в стандарте указывается величина «e», зависящая в основном от угла наклона беговой дорожки к оси вращения.

Слайд 13





Если для внешних сил, действующих на подшипник, Fa / VFr  e, то X = 1, а Y = 0. В противном случае, когда Fa / VFr > e, X и Y определяются по каталогу для данного типа подшипников.
Если для внешних сил, действующих на подшипник, Fa / VFr  e, то X = 1, а Y = 0. В противном случае, когда Fa / VFr > e, X и Y определяются по каталогу для данного типа подшипников.
При нагружении радиально-упорных подшипников радиальной нагрузкой наклон контактной линии между внешним кольцом и телом качения на угол  к торцовой плоскости подшипника вызывает появление осевой составляющей, которая либо суммируется с внешней осевой силой, либо вычитается из неё, в зависимости от их величин и схемы установки подшипников.
Долговечность подшипника, его базовая динамическая грузоподъёмность и эквивалентная динамическая нагрузка связаны соотношением
;				(11.3)
где L10 в миллионах оборотов вращающегося кольца, а Lh10 в мото­часах работы подшипника; n – частота вращения подвижного кольца, мин-1, p – показатель степени кривой усталости; для шариковых подшипников p = 3, для роликовых  p = 10/3.
Описание слайда:
Если для внешних сил, действующих на подшипник, Fa / VFr  e, то X = 1, а Y = 0. В противном случае, когда Fa / VFr > e, X и Y определяются по каталогу для данного типа подшипников. Если для внешних сил, действующих на подшипник, Fa / VFr  e, то X = 1, а Y = 0. В противном случае, когда Fa / VFr > e, X и Y определяются по каталогу для данного типа подшипников. При нагружении радиально-упорных подшипников радиальной нагрузкой наклон контактной линии между внешним кольцом и телом качения на угол  к торцовой плоскости подшипника вызывает появление осевой составляющей, которая либо суммируется с внешней осевой силой, либо вычитается из неё, в зависимости от их величин и схемы установки подшипников. Долговечность подшипника, его базовая динамическая грузоподъёмность и эквивалентная динамическая нагрузка связаны соотношением ; (11.3) где L10 в миллионах оборотов вращающегося кольца, а Lh10 в мото­часах работы подшипника; n – частота вращения подвижного кольца, мин-1, p – показатель степени кривой усталости; для шариковых подшипников p = 3, для роликовых  p = 10/3.

Слайд 14





Срок работоспособности механизма указывается в задании на его разработку. Принимая долговечность подшипника равной этому сроку (предпочтительный вариант) или некоторой части этого срока при назначении замен подшипников в процессе эксплуатации (вариант с текущим ремонтом) и используя зависимость (11.3), определяем необходимую динамическую грузоподъёмность подшипника
Срок работоспособности механизма указывается в задании на его разработку. Принимая долговечность подшипника равной этому сроку (предпочтительный вариант) или некоторой части этого срока при назначении замен подшипников в процессе эксплуатации (вариант с текущим ремонтом) и используя зависимость (11.3), определяем необходимую динамическую грузоподъёмность подшипника
;			(11.4)
где величина p в показателе степени у скобок зависит от типа подшипника (см. выше). По известной требуемой величине грузоподъёмности подшипник выбирается из соответствующего каталога, при этом грузоподъёмность выбранного подшипника должна быть не меньше требуемой.
Описание слайда:
Срок работоспособности механизма указывается в задании на его разработку. Принимая долговечность подшипника равной этому сроку (предпочтительный вариант) или некоторой части этого срока при назначении замен подшипников в процессе эксплуатации (вариант с текущим ремонтом) и используя зависимость (11.3), определяем необходимую динамическую грузоподъёмность подшипника Срок работоспособности механизма указывается в задании на его разработку. Принимая долговечность подшипника равной этому сроку (предпочтительный вариант) или некоторой части этого срока при назначении замен подшипников в процессе эксплуатации (вариант с текущим ремонтом) и используя зависимость (11.3), определяем необходимую динамическую грузоподъёмность подшипника ; (11.4) где величина p в показателе степени у скобок зависит от типа подшипника (см. выше). По известной требуемой величине грузоподъёмности подшипник выбирается из соответствующего каталога, при этом грузоподъёмность выбранного подшипника должна быть не меньше требуемой.

Слайд 15





Подшипники качения обладают полной взаимозаменяемостью. Присоединительными размерами этих подшипников являются внутренний диаметр d, наружный диаметр D и ширина кольца B. Допуски на изготовление посадочных поверхностей подшипника не совпадают с допусками по квалитетам, установленными для гладких поверхностей. 
Подшипники качения обладают полной взаимозаменяемостью. Присоединительными размерами этих подшипников являются внутренний диаметр d, наружный диаметр D и ширина кольца B. Допуски на изготовление посадочных поверхностей подшипника не совпадают с допусками по квалитетам, установленными для гладких поверхностей. 
Стандартом установлены следующие обозначения полей допусков по классам точности подшипников: 
для отверстия внутренних колец L0, L6, L5, L4, L2; 
для наружных колец (валы) l0, l6, l5, l4, l2. 
При этом допуски на отверстия внутренних колец перевернуты относительно нулевой линии, то есть поле допуска расположено не в тело кольца, как это принято для рядовых деталей, а из тела. Вследствие перевернутости поля допуска L все посадки внутреннего кольца сдвигаются в сторону больших натягов - переходные посадки n, m и k становятся посадками с натягом, причем величина натяга в таких посадках несколько меньше по сравнению с нормальными посадками с натягом (от p до zc), а посадки с зазором h переходят в группу переходных посадок.
Описание слайда:
Подшипники качения обладают полной взаимозаменяемостью. Присоединительными размерами этих подшипников являются внутренний диаметр d, наружный диаметр D и ширина кольца B. Допуски на изготовление посадочных поверхностей подшипника не совпадают с допусками по квалитетам, установленными для гладких поверхностей. Подшипники качения обладают полной взаимозаменяемостью. Присоединительными размерами этих подшипников являются внутренний диаметр d, наружный диаметр D и ширина кольца B. Допуски на изготовление посадочных поверхностей подшипника не совпадают с допусками по квалитетам, установленными для гладких поверхностей. Стандартом установлены следующие обозначения полей допусков по классам точности подшипников: для отверстия внутренних колец L0, L6, L5, L4, L2; для наружных колец (валы) l0, l6, l5, l4, l2. При этом допуски на отверстия внутренних колец перевернуты относительно нулевой линии, то есть поле допуска расположено не в тело кольца, как это принято для рядовых деталей, а из тела. Вследствие перевернутости поля допуска L все посадки внутреннего кольца сдвигаются в сторону больших натягов - переходные посадки n, m и k становятся посадками с натягом, причем величина натяга в таких посадках несколько меньше по сравнению с нормальными посадками с натягом (от p до zc), а посадки с зазором h переходят в группу переходных посадок.

Слайд 16


Валы и подшипники. Подшипники качения (ПК), слайд №16
Описание слайда:

Слайд 17


Валы и подшипники. Подшипники качения (ПК), слайд №17
Описание слайда:

Слайд 18


Валы и подшипники. Подшипники качения (ПК), слайд №18
Описание слайда:



Похожие презентации
Mypresentation.ru
Загрузить презентацию