🗊Презентация Химический источник тока

Категория: Физика
Нажмите для полного просмотра!
Химический источник тока, слайд №1Химический источник тока, слайд №2Химический источник тока, слайд №3Химический источник тока, слайд №4Химический источник тока, слайд №5Химический источник тока, слайд №6Химический источник тока, слайд №7Химический источник тока, слайд №8Химический источник тока, слайд №9Химический источник тока, слайд №10Химический источник тока, слайд №11Химический источник тока, слайд №12

Вы можете ознакомиться и скачать презентацию на тему Химический источник тока. Доклад-сообщение содержит 12 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Химический источник тока
(ХИТ)
Максимова В.
Максимова Н.
Описание слайда:
Химический источник тока (ХИТ) Максимова В. Максимова Н.

Слайд 2





Классификация
гальванические элементы (первичные ХИТ), которые из-за необратимости протекающих в них реакций невозможно перезарядить;
электрические аккумуляторы (вторичные ХИТ) — перезаряжаемые гальванические элементы, которые с помощью внешнего источника тока (зарядного устройства) можно перезарядить;
топливные элементы (электрохимические генераторы) — устройства, подобные гальваническому элементу, но отличающееся от него тем, что вещества для электрохимической реакции подаются в него извне, а продукты реакций удаляются из него, что позволяет ему функционировать непрерывно.
Описание слайда:
Классификация гальванические элементы (первичные ХИТ), которые из-за необратимости протекающих в них реакций невозможно перезарядить; электрические аккумуляторы (вторичные ХИТ) — перезаряжаемые гальванические элементы, которые с помощью внешнего источника тока (зарядного устройства) можно перезарядить; топливные элементы (электрохимические генераторы) — устройства, подобные гальваническому элементу, но отличающееся от него тем, что вещества для электрохимической реакции подаются в него извне, а продукты реакций удаляются из него, что позволяет ему функционировать непрерывно.

Слайд 3





1) Гальванические элементы

Гальванический элемент — химический источник электрического тока, названный в честь Луиджи Гальвани. Принцип действия гальванического элемента основан на взаимодействии двух металлов через электролит, приводящем к возникновению в замкнутой цепи электрического тока.
Описание слайда:
1) Гальванические элементы Гальванический элемент — химический источник электрического тока, названный в честь Луиджи Гальвани. Принцип действия гальванического элемента основан на взаимодействии двух металлов через электролит, приводящем к возникновению в замкнутой цепи электрического тока.

Слайд 4





Характеристики гальванических элементов
Электродвижущая сила (ЭДС) гальванического элемента зависит от материала электродов и состава электролита. ЭДС описывается термодинамическими функциями, протекающих электрохимических процессов, в виде уравнения Нернста.
Ёмкость элемента — это количество электричества, которое источник тока отдает при разряде. Ёмкость зависит от массы запасенных в источнике реагентов и степени их превращения, снижается с понижением температуры или увеличением разрядного тока.
Энергия гальванического элемента численно равна произведению его ёмкости на напряжение. С увеличением количества вещества реагентов в элементе и до определенного предела, с увеличением температуры, энергия возрастает. Энергию уменьшает увеличение разрядного тока.
Сохраняемость — это срок хранения элемента, в течение которого его характеристики остаются в заданных пределах. Сохраняемость элемента уменьшается с ростом температуры хранения.
Описание слайда:
Характеристики гальванических элементов Электродвижущая сила (ЭДС) гальванического элемента зависит от материала электродов и состава электролита. ЭДС описывается термодинамическими функциями, протекающих электрохимических процессов, в виде уравнения Нернста. Ёмкость элемента — это количество электричества, которое источник тока отдает при разряде. Ёмкость зависит от массы запасенных в источнике реагентов и степени их превращения, снижается с понижением температуры или увеличением разрядного тока. Энергия гальванического элемента численно равна произведению его ёмкости на напряжение. С увеличением количества вещества реагентов в элементе и до определенного предела, с увеличением температуры, энергия возрастает. Энергию уменьшает увеличение разрядного тока. Сохраняемость — это срок хранения элемента, в течение которого его характеристики остаются в заданных пределах. Сохраняемость элемента уменьшается с ростом температуры хранения.

Слайд 5





Классификация гальванических элементов
Гальванические первичные элементы — это устройства для прямого преобразования химической энергии, заключенных в них реагентов (окислителя и восстановителя), в электрическую. Реагенты, входящие в состав источника, расходуются в процессе его работы, и действие прекращается после расхода реагентов. Примером гальванического элемента является элемент Даниэля -Якоби.
Описание слайда:
Классификация гальванических элементов Гальванические первичные элементы — это устройства для прямого преобразования химической энергии, заключенных в них реагентов (окислителя и восстановителя), в электрическую. Реагенты, входящие в состав источника, расходуются в процессе его работы, и действие прекращается после расхода реагентов. Примером гальванического элемента является элемент Даниэля -Якоби.

Слайд 6


Химический источник тока, слайд №6
Описание слайда:

Слайд 7





Применение
Батарейки используются в системе сигнализации, фонарях, часах, калькуляторах, аудиосистемах, игрушках, радио, автооборудовании, пультах дистанционного управления.
Аккумуляторы используются для запуска двигателей машин, возможно так же и применение в качестве временных источников электроэнергии в местах, удаленных от населенных пунктов.
Топливные элементы применяются в производстве электрической энергии (на электрических станциях), аварийных источниках энергии, автономном электроснабжении, транспорте, бортовом питании, мобильных устройствах.
Описание слайда:
Применение Батарейки используются в системе сигнализации, фонарях, часах, калькуляторах, аудиосистемах, игрушках, радио, автооборудовании, пультах дистанционного управления. Аккумуляторы используются для запуска двигателей машин, возможно так же и применение в качестве временных источников электроэнергии в местах, удаленных от населенных пунктов. Топливные элементы применяются в производстве электрической энергии (на электрических станциях), аварийных источниках энергии, автономном электроснабжении, транспорте, бортовом питании, мобильных устройствах.

Слайд 8





2) Электрические аккумуляторы

Электрический аккумулятор — химический источник тока многоразового действия (то есть в отличие от гальванического элемента химические реакции, непосредственно превращаемые в электрическую энергию, многократно обратимы). Электрические аккумуляторы используются для накопления энергии и автономного питания различных устройств.
Описание слайда:
2) Электрические аккумуляторы Электрический аккумулятор — химический источник тока многоразового действия (то есть в отличие от гальванического элемента химические реакции, непосредственно превращаемые в электрическую энергию, многократно обратимы). Электрические аккумуляторы используются для накопления энергии и автономного питания различных устройств.

Слайд 9





3) Топливные элементы

Топливный элемент — электрохимическое устройство, подобное гальваническому элементу, но отличающееся от него тем, что вещества для электрохимической реакции подаются в него извне — в отличие от ограниченного количества энергии, запасенного в гальваническом элементе или аккумуляторе.
Описание слайда:
3) Топливные элементы Топливный элемент — электрохимическое устройство, подобное гальваническому элементу, но отличающееся от него тем, что вещества для электрохимической реакции подаются в него извне — в отличие от ограниченного количества энергии, запасенного в гальваническом элементе или аккумуляторе.

Слайд 10





Применение топливных элементов
Описание слайда:
Применение топливных элементов

Слайд 11





Преимущества водородных топливных элементов
Высокий КПД
У топливных элементов нет жёсткого ограничения на КПД, как у тепловых машин (КПД цикла Карно является максимально возможным КПД среди всех тепловых машин с такими же минимальной и максимальной температурами).
Высокий КПД достигается благодаря прямому превращению энергии топлива в электроэнергию. Если в обычных генераторных установках топливо сначала сжигается, полученный пар или газ вращает турбину или вал двигателя внутреннего сгорания, которые в свою очередь вращают электрический генератор. Результативный максимум КПД составляет 53 %, чаще же он находится на уровне порядка 35-38 %. У существующих топливных элементов КПД составляет 60-80 %
КПД почти не зависит от коэффициента загрузки.
Описание слайда:
Преимущества водородных топливных элементов Высокий КПД У топливных элементов нет жёсткого ограничения на КПД, как у тепловых машин (КПД цикла Карно является максимально возможным КПД среди всех тепловых машин с такими же минимальной и максимальной температурами). Высокий КПД достигается благодаря прямому превращению энергии топлива в электроэнергию. Если в обычных генераторных установках топливо сначала сжигается, полученный пар или газ вращает турбину или вал двигателя внутреннего сгорания, которые в свою очередь вращают электрический генератор. Результативный максимум КПД составляет 53 %, чаще же он находится на уровне порядка 35-38 %. У существующих топливных элементов КПД составляет 60-80 % КПД почти не зависит от коэффициента загрузки.

Слайд 12





Экологичность
Экологичность
pro: В воздух выделяется лишь водяной пар, который не наносит вреда окружающей среде.
contra: водород просачиваясь как из баллона так и топливного элемента, будучи легче воздуха безвозвратно покидает атмосферу Земли, что при массовом применении технологий на водороде, способно привести к глобальной потере воды, если водород будет производиться электролизом воды.
Компактные размеры
Топливные элементы легче и имеют меньшие размеры, чем традиционные источники питания. Топливные элементы производят меньше шума, меньше нагреваются, более эффективны с точки зрения потребления топлива. Это становится особенно актуальным в военных приложениях. Например, солдат армии США носит 22 различных типа аккумуляторных батарей. [Средняя мощность батареи 20 ватт. Применение топливных элементов позволит сократить затраты на логистику, снизить вес, продлить время действия приборов и оборудования.
Описание слайда:
Экологичность Экологичность pro: В воздух выделяется лишь водяной пар, который не наносит вреда окружающей среде. contra: водород просачиваясь как из баллона так и топливного элемента, будучи легче воздуха безвозвратно покидает атмосферу Земли, что при массовом применении технологий на водороде, способно привести к глобальной потере воды, если водород будет производиться электролизом воды. Компактные размеры Топливные элементы легче и имеют меньшие размеры, чем традиционные источники питания. Топливные элементы производят меньше шума, меньше нагреваются, более эффективны с точки зрения потребления топлива. Это становится особенно актуальным в военных приложениях. Например, солдат армии США носит 22 различных типа аккумуляторных батарей. [Средняя мощность батареи 20 ватт. Применение топливных элементов позволит сократить затраты на логистику, снизить вес, продлить время действия приборов и оборудования.



Похожие презентации
Mypresentation.ru
Загрузить презентацию