🗊Зачем нужны ускорители элементарных частиц

Категория: Физика
Нажмите для полного просмотра!
Зачем нужны ускорители элементарных частиц, слайд №1Зачем нужны ускорители элементарных частиц, слайд №2Зачем нужны ускорители элементарных частиц, слайд №3Зачем нужны ускорители элементарных частиц, слайд №4Зачем нужны ускорители элементарных частиц, слайд №5Зачем нужны ускорители элементарных частиц, слайд №6Зачем нужны ускорители элементарных частиц, слайд №7Зачем нужны ускорители элементарных частиц, слайд №8Зачем нужны ускорители элементарных частиц, слайд №9Зачем нужны ускорители элементарных частиц, слайд №10Зачем нужны ускорители элементарных частиц, слайд №11Зачем нужны ускорители элементарных частиц, слайд №12Зачем нужны ускорители элементарных частиц, слайд №13Зачем нужны ускорители элементарных частиц, слайд №14Зачем нужны ускорители элементарных частиц, слайд №15Зачем нужны ускорители элементарных частиц, слайд №16Зачем нужны ускорители элементарных частиц, слайд №17Зачем нужны ускорители элементарных частиц, слайд №18Зачем нужны ускорители элементарных частиц, слайд №19Зачем нужны ускорители элементарных частиц, слайд №20Зачем нужны ускорители элементарных частиц, слайд №21Зачем нужны ускорители элементарных частиц, слайд №22Зачем нужны ускорители элементарных частиц, слайд №23Зачем нужны ускорители элементарных частиц, слайд №24Зачем нужны ускорители элементарных частиц, слайд №25Зачем нужны ускорители элементарных частиц, слайд №26Зачем нужны ускорители элементарных частиц, слайд №27Зачем нужны ускорители элементарных частиц, слайд №28Зачем нужны ускорители элементарных частиц, слайд №29Зачем нужны ускорители элементарных частиц, слайд №30Зачем нужны ускорители элементарных частиц, слайд №31Зачем нужны ускорители элементарных частиц, слайд №32Зачем нужны ускорители элементарных частиц, слайд №33Зачем нужны ускорители элементарных частиц, слайд №34Зачем нужны ускорители элементарных частиц, слайд №35Зачем нужны ускорители элементарных частиц, слайд №36Зачем нужны ускорители элементарных частиц, слайд №37

Содержание

Вы можете ознакомиться и скачать Зачем нужны ускорители элементарных частиц. Презентация содержит 37 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Зачем нужны ускорители элементарных частиц
Описание слайда:
Зачем нужны ускорители элементарных частиц

Слайд 2


Зачем нужны ускорители элементарных частиц, слайд №2
Описание слайда:

Слайд 3







Современные физики-экспериментаторы, как и столетия назад, проводят опыты, однако «приборы» у них совсем других размеров. 
Объект исследований - микромир, хранящий пока тайны строения материи, пространства и времени. Эксперименты с элементарными частицами помогают развивать фундаментальную науку, а, значит, понять основы мироустройства. 
Микромир можно исследовать только с помощью «частиц-разведчиков», разогнанных до сверхвысоких энергий. Чтобы получить нужную энергию, требуются мощные  электрические и магнитные поля, для чего и сооружают грандиозные по размерам и по сложности машины – ускорители.
Описание слайда:
Современные физики-экспериментаторы, как и столетия назад, проводят опыты, однако «приборы» у них совсем других размеров. Объект исследований - микромир, хранящий пока тайны строения материи, пространства и времени. Эксперименты с элементарными частицами помогают развивать фундаментальную науку, а, значит, понять основы мироустройства. Микромир можно исследовать только с помощью «частиц-разведчиков», разогнанных до сверхвысоких энергий. Чтобы получить нужную энергию, требуются мощные электрические и магнитные поля, для чего и сооружают грандиозные по размерам и по сложности машины – ускорители.

Слайд 4







Физика всегда была наукой интернациональной. Современная физика требует столь существенных затрат , что для увеличения научной эффективности экспериментов при тех же деньгах нужно объединение усилий как физиков, так и заинтересованных государств.
В таких центрах науки, как Объединённый институт ядерных исследований (Россия), Брукхейвенская национальная лаборатория и Фермилаб (США) и других работают исследователи со всего мира.
Создана и успешно функционирует Европейская организация по ядерным исследованиям - ЦЕРН (CERN), крупнейшая в мире лаборатория физики высоких энергий, участниками которой являются десятки государств (У России статус страны-наблюдателя). Основным проектом ЦЕРНа в данное время является Большой адронный коллайдер (LHC).
Описание слайда:
Физика всегда была наукой интернациональной. Современная физика требует столь существенных затрат , что для увеличения научной эффективности экспериментов при тех же деньгах нужно объединение усилий как физиков, так и заинтересованных государств. В таких центрах науки, как Объединённый институт ядерных исследований (Россия), Брукхейвенская национальная лаборатория и Фермилаб (США) и других работают исследователи со всего мира. Создана и успешно функционирует Европейская организация по ядерным исследованиям - ЦЕРН (CERN), крупнейшая в мире лаборатория физики высоких энергий, участниками которой являются десятки государств (У России статус страны-наблюдателя). Основным проектом ЦЕРНа в данное время является Большой адронный коллайдер (LHC).

Слайд 5





Какая польза для практики от экспериментов на ускорителях?
В мире насчитывается примерно 17 тысяч 
ускорителей, но лишь несколько десятков 
из них относятся к высокоэнергетическим 
и используются в научных целях. 
Фундаментальная наука — это основа 
технологий в долгосрочной перспективе. 
Подавляющее большинство – это 
компактные низкоэнергетические 
ускорители, использующиеся в целях медицины, дефектоскопии, 
обеззараживающих облучений и т. д.
«Большая» наука уже сегодня дала методики и приборы, которые с 
успехом служат людям, это: адронная терапия раковых опухолей,
 позитронно-эмиссионная томография, мюонная химия и др.
Описание слайда:
Какая польза для практики от экспериментов на ускорителях? В мире насчитывается примерно 17 тысяч ускорителей, но лишь несколько десятков из них относятся к высокоэнергетическим и используются в научных целях. Фундаментальная наука — это основа технологий в долгосрочной перспективе. Подавляющее большинство – это компактные низкоэнергетические ускорители, использующиеся в целях медицины, дефектоскопии, обеззараживающих облучений и т. д. «Большая» наука уже сегодня дала методики и приборы, которые с успехом служат людям, это: адронная терапия раковых опухолей, позитронно-эмиссионная томография, мюонная химия и др.

Слайд 6





Основные применения ускорителей
Научные исследования. 
Стерилизация (продуктов питания, медицинского инструмента). 
Медицина (лечение онкологических заболеваний, радиодиагностика). 
Производство полупроводниковых устройств (инжекция примесей). 
Радиационная дефектоскопия. 
Радиационное сшивание полимеров. 
Радиационная очистка топочных газов и сточных вод.
Описание слайда:
Основные применения ускорителей Научные исследования. Стерилизация (продуктов питания, медицинского инструмента). Медицина (лечение онкологических заболеваний, радиодиагностика). Производство полупроводниковых устройств (инжекция примесей). Радиационная дефектоскопия. Радиационное сшивание полимеров. Радиационная очистка топочных газов и сточных вод.

Слайд 7





Зачем нужно развивать физику  элементарных частиц?
Даже в школьной физике можно найти немало примеров удивительной схожести математического описания природных явлений и процессов и проследить аналогии между объектами из разных её областей.
В современной физике эта «математическая экономность» природы ещё больше убеждает в том, что всё в природе взаимосвязано. Физика элементарных частиц, как составная часть физического знания о мире, находится на этапе становления, поэтому остаётся только догадываться, какие тайны и возможности перед нами откроются по мере её развития.
Описание слайда:
Зачем нужно развивать физику элементарных частиц? Даже в школьной физике можно найти немало примеров удивительной схожести математического описания природных явлений и процессов и проследить аналогии между объектами из разных её областей. В современной физике эта «математическая экономность» природы ещё больше убеждает в том, что всё в природе взаимосвязано. Физика элементарных частиц, как составная часть физического знания о мире, находится на этапе становления, поэтому остаётся только догадываться, какие тайны и возможности перед нами откроются по мере её развития.

Слайд 8





Как работает ускоритель? 

В основе работы ускорителей заложено взаимодействие заряженных частиц с электрическим и магнитным полями: частицы разгоняются до больших скоростей, затем ускоренные частицы приводят в столкновение с мишенями.
Соударение частиц высоких энергий совсем не похоже на столкновение шаров при игре в бильярд. Мир высоких энергий и невообразимо малых расстояний настолько специфичен, что для описания взаимодействий в нём используется квантовая физика.
Задача исследователя — восстановить картину события по зафиксированным следам частиц. Результат взаимодействия изучается путём анализа поведения очень большого числа частиц и проводится с помощью ЭВМ
Описание слайда:
Как работает ускоритель? В основе работы ускорителей заложено взаимодействие заряженных частиц с электрическим и магнитным полями: частицы разгоняются до больших скоростей, затем ускоренные частицы приводят в столкновение с мишенями. Соударение частиц высоких энергий совсем не похоже на столкновение шаров при игре в бильярд. Мир высоких энергий и невообразимо малых расстояний настолько специфичен, что для описания взаимодействий в нём используется квантовая физика. Задача исследователя — восстановить картину события по зафиксированным следам частиц. Результат взаимодействия изучается путём анализа поведения очень большого числа частиц и проводится с помощью ЭВМ

Слайд 9





Действие электрического поля на заряженные частицы
Электрическое поле способно напрямую совершать работу над частицей, то есть увеличивать её энергию.
В однородном электрическом поле движение заряженных частиц происходит с постоянным ускорением, в неоднородном – с переменным. Во всех случаях при отсутствии сил сопротивления энергия, приобретённая изначально покоящейся частицей, равна работе, совершённой силами поля:
 
Описание слайда:
Действие электрического поля на заряженные частицы Электрическое поле способно напрямую совершать работу над частицей, то есть увеличивать её энергию. В однородном электрическом поле движение заряженных частиц происходит с постоянным ускорением, в неоднородном – с переменным. Во всех случаях при отсутствии сил сопротивления энергия, приобретённая изначально покоящейся частицей, равна работе, совершённой силами поля:  

Слайд 10







Магнитное поле, создавая силу Лоренца, лишь отклоняет частицу, не изменяя её энергии, и задаёт орбиту, по которой движутся частицы. 
Движение нерелятивистских частиц описывается классической физикой:                
     при α = 90°
     радиус окружности
      
     период обращения
Для описания движения релятивистских частиц в однородном магнитном поле используется математический аппарат релятивистской физики.
Описание слайда:
Магнитное поле, создавая силу Лоренца, лишь отклоняет частицу, не изменяя её энергии, и задаёт орбиту, по которой движутся частицы. Движение нерелятивистских частиц описывается классической физикой: при α = 90° радиус окружности период обращения Для описания движения релятивистских частиц в однородном магнитном поле используется математический аппарат релятивистской физики.

Слайд 11





Классификация ускорителей
Современные ускорители классифицируют по разным признакам: 
По типу ускоряемых частиц (различают электронные ускорители, протонные ускорители и ускорители ионов).
По характеру траекторий частиц (линейные ускорители, в которых траектории частиц прямолинейны, и циклические ускорители, в которых траектории частиц близки к окружности или спирали). 
По характеру ускоряющего поля.
По механизму, обеспечивающему 
     устойчивость движения частиц в 
     перпендикулярных к орбите 
     направлениях.
И др.
Описание слайда:
Классификация ускорителей Современные ускорители классифицируют по разным признакам: По типу ускоряемых частиц (различают электронные ускорители, протонные ускорители и ускорители ионов). По характеру траекторий частиц (линейные ускорители, в которых траектории частиц прямолинейны, и циклические ускорители, в которых траектории частиц близки к окружности или спирали). По характеру ускоряющего поля. По механизму, обеспечивающему устойчивость движения частиц в перпендикулярных к орбите направлениях. И др.

Слайд 12





Основное разделение всех существующих в мире ускорителей  - по 
Основное разделение всех существующих в мире ускорителей  - по 
принципу сообщения энергии. Можно:
«нанизать» по прямой однотипные участки, собранные из стандартной, но достаточно сложной и дорогой аппаратуры, чтобы в каждом из них частицы последовательно приобретали новые порции энергии – построить линейный ускоритель;
заставить пучок частиц проходить один и тот же ускоряющий участок многократно – построить «кольцевой», или «циклический» ускоритель. 
Для достижения высоких энергий используют кольцевые ускорители, там, 
где не нужны высокие энергии частиц - линейные ускорители.
Описание слайда:
Основное разделение всех существующих в мире ускорителей - по Основное разделение всех существующих в мире ускорителей - по принципу сообщения энергии. Можно: «нанизать» по прямой однотипные участки, собранные из стандартной, но достаточно сложной и дорогой аппаратуры, чтобы в каждом из них частицы последовательно приобретали новые порции энергии – построить линейный ускоритель; заставить пучок частиц проходить один и тот же ускоряющий участок многократно – построить «кольцевой», или «циклический» ускоритель. Для достижения высоких энергий используют кольцевые ускорители, там, где не нужны высокие энергии частиц - линейные ускорители.

Слайд 13





Механические аналогии
На этих рисунках художник попытался изобразить особенности в способах ускорения частиц при помощи различных ускорителей заряженных частиц: 
а - линейный ускоритель; 
б - циклотрон; 
в - синхроциклотрон; 
г-синхрофазотрон.
Описание слайда:
Механические аналогии На этих рисунках художник попытался изобразить особенности в способах ускорения частиц при помощи различных ускорителей заряженных частиц: а - линейный ускоритель; б - циклотрон; в - синхроциклотрон; г-синхрофазотрон.

Слайд 14





Линейный ускоритель
В линейных ускорителях траектории ускоряемых частиц близки к прямым линиям. По всей длине таких ускорителей располагаются ускоряющие станции. Наибольший из работающих линейных ускоритель (электронный ускоритель в Стэнфорде) имеет длину 3,05 км. Линейные ускорители позволяют получить мощные потоки частиц, но при больших энергиях оказываются слишком дорогими.
Описание слайда:
Линейный ускоритель В линейных ускорителях траектории ускоряемых частиц близки к прямым линиям. По всей длине таких ускорителей располагаются ускоряющие станции. Наибольший из работающих линейных ускоритель (электронный ускоритель в Стэнфорде) имеет длину 3,05 км. Линейные ускорители позволяют получить мощные потоки частиц, но при больших энергиях оказываются слишком дорогими.

Слайд 15





Циклический ускоритель
Описание слайда:
Циклический ускоритель

Слайд 16





Типы циклических ускорителей
В протонных ускорителях на очень высокие энергии к концу периода ускорения скорость частиц увеличивается настолько, что они обращаются по круговой орбите практически с постоянной частотой, поэтому синхрофазотроны для протонов высоких энергий называют «протонными синхротронами».
Описание слайда:
Типы циклических ускорителей В протонных ускорителях на очень высокие энергии к концу периода ускорения скорость частиц увеличивается настолько, что они обращаются по круговой орбите практически с постоянной частотой, поэтому синхрофазотроны для протонов высоких энергий называют «протонными синхротронами».

Слайд 17


Зачем нужны ускорители элементарных частиц, слайд №17
Описание слайда:

Слайд 18





Устройство 
циклотрона
Идея циклотрона проста: между двумя полукруглыми полыми электродами (3) - дуантами, приложено переменное электрическое напряжение (4). Дуанты помещены между полюсами электромагнита, создающего постоянное магнитное поле. 
Частица (1), вращаясь по окружности в магнитном поле, ускоряется на каждом обороте(2) электрическим полем в щели между дуантами, если частота изменения полярности напряжения на дуантах равна частоте обращения частицы (циклотрон является резонансным ускорителем). 
С увеличением энергии на каждом обороте радиус траектории частицы будет увеличиваться, пока она не выйдет за пределы дуантов.
Описание слайда:
Устройство циклотрона Идея циклотрона проста: между двумя полукруглыми полыми электродами (3) - дуантами, приложено переменное электрическое напряжение (4). Дуанты помещены между полюсами электромагнита, создающего постоянное магнитное поле. Частица (1), вращаясь по окружности в магнитном поле, ускоряется на каждом обороте(2) электрическим полем в щели между дуантами, если частота изменения полярности напряжения на дуантах равна частоте обращения частицы (циклотрон является резонансным ускорителем). С увеличением энергии на каждом обороте радиус траектории частицы будет увеличиваться, пока она не выйдет за пределы дуантов.

Слайд 19





Первый из циклических ускорителей
Циклотрон — первый из циклических ускорителей; был разработан и построен в 1931 году американскими физиками Э. Лоуренсом и С. Ливингстоном, за что была присуждена Нобелевская премия в 1939 году.
Описание слайда:
Первый из циклических ускорителей Циклотрон — первый из циклических ускорителей; был разработан и построен в 1931 году американскими физиками Э. Лоуренсом и С. Ливингстоном, за что была присуждена Нобелевская премия в 1939 году.

Слайд 20





Коллайдеры	
Коллайдеры  — ускорители заряженных частиц на встречных пучках, предназначенные для изучения продуктов их соударений. В коллайдерах элементарным частицам вещества сообщается наиболее высокая энергия, так как при встречном движении растёт относительная скорость.
Это чисто экспериментальные установки, цель которых — изучение процессов столкновения частиц высоких энергий.
Описание слайда:
Коллайдеры Коллайдеры  — ускорители заряженных частиц на встречных пучках, предназначенные для изучения продуктов их соударений. В коллайдерах элементарным частицам вещества сообщается наиболее высокая энергия, так как при встречном движении растёт относительная скорость. Это чисто экспериментальные установки, цель которых — изучение процессов столкновения частиц высоких энергий.

Слайд 21





Действующие коллайдеры	
Развитие физики высоких энергий в 21-м веке связывается именно с коллайдерами. Их сооружено пока считанные единицы, и находятся они в самых развитых странах мира - в США, Японии, ФРГ, а также в Европейской организации по ядерным исследованиям (ЦЕРН), базирующейся в Швейцарии (в России (Протвино) к концу 20-го века был сооружен подземный кольцевой тоннель длиной 21 км для российского коллайдера, однако этот проект к началу 21 века был остановлен по ряду причин, прежде всего – финансовых). 
Самый мощный из действующих находится в США и называется "Тэватрон", поскольку в его кольце длиной более 6 км и с использованием сверхпроводящих магнитов протоны ускоряются до энергии около 1 тераэлектронвольт (1 ТэВ =1000 ГэВ).
.
Описание слайда:
Действующие коллайдеры Развитие физики высоких энергий в 21-м веке связывается именно с коллайдерами. Их сооружено пока считанные единицы, и находятся они в самых развитых странах мира - в США, Японии, ФРГ, а также в Европейской организации по ядерным исследованиям (ЦЕРН), базирующейся в Швейцарии (в России (Протвино) к концу 20-го века был сооружен подземный кольцевой тоннель длиной 21 км для российского коллайдера, однако этот проект к началу 21 века был остановлен по ряду причин, прежде всего – финансовых). Самый мощный из действующих находится в США и называется "Тэватрон", поскольку в его кольце длиной более 6 км и с использованием сверхпроводящих магнитов протоны ускоряются до энергии около 1 тераэлектронвольт (1 ТэВ =1000 ГэВ). .

Слайд 22





Большой адронный коллайдер
Описание слайда:
Большой адронный коллайдер

Слайд 23





Что такое БАК?
Большой адронный коллайдер (англ. Large Hadron Collider, LHC; сокращённо БАК) — кольцевой ускоритель заряженных частиц на встречных пучках, предназначенный для разгона протонов и тяжёлых ионов (ионов свинца) и изучения продуктов их соударений.
БАК  - это самая сложная экспериментальная установка, когда-либо созданная человеком. Его сложность — не только инженерная, но и научная, ведь его функционирование опирается на множество самых разных физических явлений.
Описание слайда:
Что такое БАК? Большой адронный коллайдер (англ. Large Hadron Collider, LHC; сокращённо БАК) — кольцевой ускоритель заряженных частиц на встречных пучках, предназначенный для разгона протонов и тяжёлых ионов (ионов свинца) и изучения продуктов их соударений. БАК  - это самая сложная экспериментальная установка, когда-либо созданная человеком. Его сложность — не только инженерная, но и научная, ведь его функционирование опирается на множество самых разных физических явлений.

Слайд 24





Что ожидают учёные от запуска БАК?
Задачи, стоящие перед LHC:
Изучение хиггсовского механизма. Подробнее про поиск и изучение бозона Хиггса на LHC
Поиск суперсимметрии мира.
Изучение топ-кварков. Подробнее про изучение топ-кварков на LHC 
Изучение кварк-глюонной плазмы.
Изучение фотон-адронных и фотон-фотонных столкновений.
Проверка экзотических теорий.
Описание слайда:
Что ожидают учёные от запуска БАК? Задачи, стоящие перед LHC: Изучение хиггсовского механизма. Подробнее про поиск и изучение бозона Хиггса на LHC Поиск суперсимметрии мира. Изучение топ-кварков. Подробнее про изучение топ-кварков на LHC Изучение кварк-глюонной плазмы. Изучение фотон-адронных и фотон-фотонных столкновений. Проверка экзотических теорий.

Слайд 25





 Идея проекта 
Идея проекта Большого адронного коллайдера родилась в 1984 году и была официально одобрена десятью годами позже. Его строительство началось в 2001 году, после окончания работы предыдущего ускорителя — Большого электрон-позитронного коллайдера.
Описание слайда:
Идея проекта Идея проекта Большого адронного коллайдера родилась в 1984 году и была официально одобрена десятью годами позже. Его строительство началось в 2001 году, после окончания работы предыдущего ускорителя — Большого электрон-позитронного коллайдера.

Слайд 26





 Размещение LHC 
Коллайдер построен в научно-исследовательском центре Европейского совета ядерных исследований (фр. Conseil Européen pour la Recherche Nucléaire, CERN), на границе Швейцарии и Франции, недалеко от Женевы, расположен под землёй на территории Франции и Швейцарии.
БАК размещён в том же туннеле, который прежде занимал Большой электрон-позитронный коллайдер (длина окружности 26,7 км, глубина залегания туннеля — от 50 до 175 метров).
Описание слайда:
Размещение LHC Коллайдер построен в научно-исследовательском центре Европейского совета ядерных исследований (фр. Conseil Européen pour la Recherche Nucléaire, CERN), на границе Швейцарии и Франции, недалеко от Женевы, расположен под землёй на территории Франции и Швейцарии. БАК размещён в том же туннеле, который прежде занимал Большой электрон-позитронный коллайдер (длина окружности 26,7 км, глубина залегания туннеля — от 50 до 175 метров).

Слайд 27





LHC
В 27-километровом кольцевом подземном тоннеле протоны будут разгоняться «на встречных курсах» до немыслимых прежде в земных условиях энергий, а картины происходящих соударений и взаимодействий будут изучаться в 4-х экспериментальных зонах тоннеля, где размещено оборудование 4-х многоуровневых детекторов вторичных частиц. Эти детекторы называют по их английской аббревиатуре: ATLAS, CMS, ALICE, LHCb, и каждый из них нацелен на свою (в зависимости от типа устанавливаемого научного оборудования) экспериментальную программу.
Описание слайда:
LHC В 27-километровом кольцевом подземном тоннеле протоны будут разгоняться «на встречных курсах» до немыслимых прежде в земных условиях энергий, а картины происходящих соударений и взаимодействий будут изучаться в 4-х экспериментальных зонах тоннеля, где размещено оборудование 4-х многоуровневых детекторов вторичных частиц. Эти детекторы называют по их английской аббревиатуре: ATLAS, CMS, ALICE, LHCb, и каждый из них нацелен на свою (в зависимости от типа устанавливаемого научного оборудования) экспериментальную программу.

Слайд 28





Эсперимент ATLAS
На сегодняшний день наиболее полную физическую теорию, описывающую все явления в которых участвуют элементарные частицы, называют Стандартной Моделью физики элементарных частиц. За единственным исключением, бозона Хиггса, все частицы Стандартной Модели наблюдались экспериментально.
Эксперимент ATLAS будет проводиться на детекторе с тем же названием и предназначен для поиска сверхтяжёлых элементарных частиц. Физики верят, что эксперименты на детекторах ATLAS и CMS могут пролить свет на физику за рамками Стандартной Модели. 
Размеры детектора ATLAS: длина - 46 метров, диаметр - 25 метров, общий вес - около 7000 тонн. В проекте участвуют около 2000 ученых и инженеров из 165 лабораторий и универсистетов из 35 стран.
Описание слайда:
Эсперимент ATLAS На сегодняшний день наиболее полную физическую теорию, описывающую все явления в которых участвуют элементарные частицы, называют Стандартной Моделью физики элементарных частиц. За единственным исключением, бозона Хиггса, все частицы Стандартной Модели наблюдались экспериментально. Эксперимент ATLAS будет проводиться на детекторе с тем же названием и предназначен для поиска сверхтяжёлых элементарных частиц. Физики верят, что эксперименты на детекторах ATLAS и CMS могут пролить свет на физику за рамками Стандартной Модели. Размеры детектора ATLAS: длина - 46 метров, диаметр - 25 метров, общий вес - около 7000 тонн. В проекте участвуют около 2000 ученых и инженеров из 165 лабораторий и универсистетов из 35 стран.

Слайд 29





LHC и общество
Одной строкой.
Безопасны ли эксперименты на LHC? Наиболее часто обсуждается опасность возникновения микроскопических чёрных дыр с последующей цепной реакцией захвата окружающей материи, а также угроза возникновения страпелек, гипотетически способных преобразовать в страпельки всю материю Вселенной.
Да, безопасны. Эта уверенность основана на надежно проверенных законах физики, на экспериментальных данных с предыдущих ускорителей, а также на астрофизических данных.
Описание слайда:
LHC и общество Одной строкой. Безопасны ли эксперименты на LHC? Наиболее часто обсуждается опасность возникновения микроскопических чёрных дыр с последующей цепной реакцией захвата окружающей материи, а также угроза возникновения страпелек, гипотетически способных преобразовать в страпельки всю материю Вселенной. Да, безопасны. Эта уверенность основана на надежно проверенных законах физики, на экспериментальных данных с предыдущих ускорителей, а также на астрофизических данных.

Слайд 30





Пуск коллайдера
В августе 2008 года успешно завершились предварительные испытания БАК, а  10 сентября был произведён официальный запуск коллайдера. В 12:28 по московскому времени запущенный пучок протонов успешно прошёл весь периметр коллайдера по часовой стрелке. В 17:02 по московскому времени запущенный против часовой стрелки пучок протонов также успешно прошёл весь периметр коллайдера.
Описание слайда:
Пуск коллайдера В августе 2008 года успешно завершились предварительные испытания БАК, а 10 сентября был произведён официальный запуск коллайдера. В 12:28 по московскому времени запущенный пучок протонов успешно прошёл весь периметр коллайдера по часовой стрелке. В 17:02 по московскому времени запущенный против часовой стрелки пучок протонов также успешно прошёл весь периметр коллайдера.

Слайд 31


Зачем нужны ускорители элементарных частиц, слайд №31
Описание слайда:

Слайд 32





Вокруг коллайдера
В CERN есть фолк-группа Les Horribles Cernettes (LHC, та же аббревиатура, что и у БАК). Первая песня этого коллектива «Collider» была посвящена парню, который забыл о своей девушке, будучи увлечённым созданием коллайдера.
Описание слайда:
Вокруг коллайдера В CERN есть фолк-группа Les Horribles Cernettes (LHC, та же аббревиатура, что и у БАК). Первая песня этого коллектива «Collider» была посвящена парню, который забыл о своей девушке, будучи увлечённым созданием коллайдера.

Слайд 33





Вокруг коллайдера
В научно-фантастическом телесериале Лексс (The Lexx, показ стартовал в апреле 1997 года) в четвёртом сезоне главные герои оказываются на Земле. Обнаруживается, что Земля относится к планетам «типа 13», на последней стадии развития. Планеты типа 13 всегда уничтожают себя сами, в результате неудачного опыта по определению массы бозона Хиггса на сверхмощном ускорителе элементарных частиц, при этом сжимаясь до размеров горошины. В конечном итоге, Земля была уничтожена.
Описание слайда:
Вокруг коллайдера В научно-фантастическом телесериале Лексс (The Lexx, показ стартовал в апреле 1997 года) в четвёртом сезоне главные герои оказываются на Земле. Обнаруживается, что Земля относится к планетам «типа 13», на последней стадии развития. Планеты типа 13 всегда уничтожают себя сами, в результате неудачного опыта по определению массы бозона Хиггса на сверхмощном ускорителе элементарных частиц, при этом сжимаясь до размеров горошины. В конечном итоге, Земля была уничтожена.

Слайд 34





Вокруг коллайдера
В шестой серии тринадцатого сезона мультсериала «Южный Парк» с помощью магнита из Большого адронного коллайдера была достигнута сверхсветовая скорость на конкурсе Дерби соснового леса (Pinewood Derby).
Описание слайда:
Вокруг коллайдера В шестой серии тринадцатого сезона мультсериала «Южный Парк» с помощью магнита из Большого адронного коллайдера была достигнута сверхсветовая скорость на конкурсе Дерби соснового леса (Pinewood Derby).

Слайд 35





Вокруг коллайдера
В фильме «Ангелы и демоны» антивещество из Большого адронного коллайдера было украдено, и похитители хотели взорвать с помощью него Ватикан.
Описание слайда:
Вокруг коллайдера В фильме «Ангелы и демоны» антивещество из Большого адронного коллайдера было украдено, и похитители хотели взорвать с помощью него Ватикан.

Слайд 36





Вокруг коллайдера
В фильме «Конец света» (англ. End Day) производства BBC последним из четырёх наиболее вероятных сценариев апокалипсиса являлась авария при запуске новейшего ускорителя элементарных частиц, повлекшая за собой образование чёрной дыры.
Описание слайда:
Вокруг коллайдера В фильме «Конец света» (англ. End Day) производства BBC последним из четырёх наиболее вероятных сценариев апокалипсиса являлась авария при запуске новейшего ускорителя элементарных частиц, повлекшая за собой образование чёрной дыры.

Слайд 37





Используемые источники
http://ru.wikipedia.org
http://nuclphys.sinp.msu.ru
http://pda.korrespondent.net
http://elementy.ru/
http://www.lenta.ru/
http://newsbak.ru/
http:// www.scorcher.ru и другие сайты.
Описание слайда:
Используемые источники http://ru.wikipedia.org http://nuclphys.sinp.msu.ru http://pda.korrespondent.net http://elementy.ru/ http://www.lenta.ru/ http://newsbak.ru/ http:// www.scorcher.ru и другие сайты.



Похожие презентации
Mypresentation.ru
Загрузить презентацию