🗊 Законы термодинамики Первый закон термодинамики является, в сущности, законом сохранения энергии, распространенным на все ма

Категория: Физика
Нажмите для полного просмотра!
  
  Законы термодинамики   Первый закон термодинамики является, в сущности, законом сохранения энергии, распространенным на все ма, слайд №1  
  Законы термодинамики   Первый закон термодинамики является, в сущности, законом сохранения энергии, распространенным на все ма, слайд №2  
  Законы термодинамики   Первый закон термодинамики является, в сущности, законом сохранения энергии, распространенным на все ма, слайд №3  
  Законы термодинамики   Первый закон термодинамики является, в сущности, законом сохранения энергии, распространенным на все ма, слайд №4  
  Законы термодинамики   Первый закон термодинамики является, в сущности, законом сохранения энергии, распространенным на все ма, слайд №5  
  Законы термодинамики   Первый закон термодинамики является, в сущности, законом сохранения энергии, распространенным на все ма, слайд №6  
  Законы термодинамики   Первый закон термодинамики является, в сущности, законом сохранения энергии, распространенным на все ма, слайд №7  
  Законы термодинамики   Первый закон термодинамики является, в сущности, законом сохранения энергии, распространенным на все ма, слайд №8  
  Законы термодинамики   Первый закон термодинамики является, в сущности, законом сохранения энергии, распространенным на все ма, слайд №9  
  Законы термодинамики   Первый закон термодинамики является, в сущности, законом сохранения энергии, распространенным на все ма, слайд №10

Вы можете ознакомиться и скачать Законы термодинамики Первый закон термодинамики является, в сущности, законом сохранения энергии, распространенным на все ма. Презентация содержит 10 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Законы термодинамики 
Первый закон термодинамики является, в сущности, законом сохранения энергии, распространенным на все макроскопические тела. Любая макроскопическая система характеризуется в состоянии равновесия набором макроскопических параметров, таких, например, как давление, температура, намагниченность и т.д. Задание этих параметров определяет в термодинамике состояние или макроскопическое состояние системы. Вопрос о том, какими именно параметрами должно описываться состояние каждой конкретной макроскопической системы, выходит за рамки термодинамики
Описание слайда:
Законы термодинамики Первый закон термодинамики является, в сущности, законом сохранения энергии, распространенным на все макроскопические тела. Любая макроскопическая система характеризуется в состоянии равновесия набором макроскопических параметров, таких, например, как давление, температура, намагниченность и т.д. Задание этих параметров определяет в термодинамике состояние или макроскопическое состояние системы. Вопрос о том, какими именно параметрами должно описываться состояние каждой конкретной макроскопической системы, выходит за рамки термодинамики

Слайд 2





Первый закон термодинамики постулирует существование внутренней энергии – некоторой функции состояния[1] , такой, что если к системе подводится тепло  и над ней производится работа , то изменение внутренней энергии  есть сумма подведенного тепла и совершенной работы:
Первый закон термодинамики постулирует существование внутренней энергии – некоторой функции состояния[1] , такой, что если к системе подводится тепло  и над ней производится работа , то изменение внутренней энергии  есть сумма подведенного тепла и совершенной работы:
.                                                         (2.21)
При этом ни работа, ни количество теплоты сами по себе не являются функциями состояния, они определяются процессом, происходящим с системой.
	С точки зрения молекулярно-кинетических представлений, внутренняя энергия это механическая энергия, связанная с движением и взаимодействием атомов; равенство (2.21) можно рассматривать как обобщение (2.11) на все макроскопические системы.
Описание слайда:
Первый закон термодинамики постулирует существование внутренней энергии – некоторой функции состояния[1] , такой, что если к системе подводится тепло и над ней производится работа , то изменение внутренней энергии есть сумма подведенного тепла и совершенной работы: Первый закон термодинамики постулирует существование внутренней энергии – некоторой функции состояния[1] , такой, что если к системе подводится тепло и над ней производится работа , то изменение внутренней энергии есть сумма подведенного тепла и совершенной работы: . (2.21) При этом ни работа, ни количество теплоты сами по себе не являются функциями состояния, они определяются процессом, происходящим с системой. С точки зрения молекулярно-кинетических представлений, внутренняя энергия это механическая энергия, связанная с движением и взаимодействием атомов; равенство (2.21) можно рассматривать как обобщение (2.11) на все макроскопические системы.

Слайд 3





Сообщение телу некоторого количества теплоты может привести к изменению его температуры. Пусть  - количество теплоты, сообщенное телу в некотором процессе, а  - изменение температуры тела в этом процессе. Величину
Сообщение телу некоторого количества теплоты может привести к изменению его температуры. Пусть  - количество теплоты, сообщенное телу в некотором процессе, а  - изменение температуры тела в этом процессе. Величину
,
где  - масса тела, называют удельной теплоемкостью тела, а величину 
где  - количество вещества – молярной теплоемкостью.
Описание слайда:
Сообщение телу некоторого количества теплоты может привести к изменению его температуры. Пусть - количество теплоты, сообщенное телу в некотором процессе, а - изменение температуры тела в этом процессе. Величину Сообщение телу некоторого количества теплоты может привести к изменению его температуры. Пусть - количество теплоты, сообщенное телу в некотором процессе, а - изменение температуры тела в этом процессе. Величину , где - масса тела, называют удельной теплоемкостью тела, а величину где - количество вещества – молярной теплоемкостью.

Слайд 4





Процесс прихода замкнутой термодинамической системы в состояние теплового равновесия характеризуется необратимостью – если система пришла в состояние равновесия, то в дальнейшем она неограниченно долго остается в этом состоянии и не может выйти из него самопроизвольно. Опыт показывает, что такая необратимость присуща не только всему процессу прихода в равновесие в целом, но и каждому его малому «шагу» в отдельности. 
Процесс прихода замкнутой термодинамической системы в состояние теплового равновесия характеризуется необратимостью – если система пришла в состояние равновесия, то в дальнейшем она неограниченно долго остается в этом состоянии и не может выйти из него самопроизвольно. Опыт показывает, что такая необратимость присуща не только всему процессу прихода в равновесие в целом, но и каждому его малому «шагу» в отдельности.
Описание слайда:
Процесс прихода замкнутой термодинамической системы в состояние теплового равновесия характеризуется необратимостью – если система пришла в состояние равновесия, то в дальнейшем она неограниченно долго остается в этом состоянии и не может выйти из него самопроизвольно. Опыт показывает, что такая необратимость присуща не только всему процессу прихода в равновесие в целом, но и каждому его малому «шагу» в отдельности. Процесс прихода замкнутой термодинамической системы в состояние теплового равновесия характеризуется необратимостью – если система пришла в состояние равновесия, то в дальнейшем она неограниченно долго остается в этом состоянии и не может выйти из него самопроизвольно. Опыт показывает, что такая необратимость присуща не только всему процессу прихода в равновесие в целом, но и каждому его малому «шагу» в отдельности.

Слайд 5





Если, например, привести два однородных тела с различной температурой в тепловой контакт, их температуры в конечном итоге станут одинаковыми, при этом на всех этапах установления теплового равновесия тепло всегда будет переходить от более нагретого тела к менее нагретому. В более сложной системе возможны процессы, при которых тепло переходит от менее нагретого тела к более нагретому, однако, такие процессы всегда сопровождаются другими, так, что любое внутреннее изменение в системе делает ее в целом «ближе» к состоянию равновесия 
Если, например, привести два однородных тела с различной температурой в тепловой контакт, их температуры в конечном итоге станут одинаковыми, при этом на всех этапах установления теплового равновесия тепло всегда будет переходить от более нагретого тела к менее нагретому. В более сложной системе возможны процессы, при которых тепло переходит от менее нагретого тела к более нагретому, однако, такие процессы всегда сопровождаются другими, так, что любое внутреннее изменение в системе делает ее в целом «ближе» к состоянию равновесия
Описание слайда:
Если, например, привести два однородных тела с различной температурой в тепловой контакт, их температуры в конечном итоге станут одинаковыми, при этом на всех этапах установления теплового равновесия тепло всегда будет переходить от более нагретого тела к менее нагретому. В более сложной системе возможны процессы, при которых тепло переходит от менее нагретого тела к более нагретому, однако, такие процессы всегда сопровождаются другими, так, что любое внутреннее изменение в системе делает ее в целом «ближе» к состоянию равновесия Если, например, привести два однородных тела с различной температурой в тепловой контакт, их температуры в конечном итоге станут одинаковыми, при этом на всех этапах установления теплового равновесия тепло всегда будет переходить от более нагретого тела к менее нагретому. В более сложной системе возможны процессы, при которых тепло переходит от менее нагретого тела к более нагретому, однако, такие процессы всегда сопровождаются другими, так, что любое внутреннее изменение в системе делает ее в целом «ближе» к состоянию равновесия

Слайд 6





Эту особенность тепловых процессов можно сформулировать в виде второго закона термодинамики: невозможны такие процессы, единственным конечным результатом которых был бы переход тепла от тела менее нагретого к телу более нагретому. Такая формулировка второго закона термодинамики называется формулировкой Клаузиуса. 
Эту особенность тепловых процессов можно сформулировать в виде второго закона термодинамики: невозможны такие процессы, единственным конечным результатом которых был бы переход тепла от тела менее нагретого к телу более нагретому. Такая формулировка второго закона термодинамики называется формулировкой Клаузиуса.
Описание слайда:
Эту особенность тепловых процессов можно сформулировать в виде второго закона термодинамики: невозможны такие процессы, единственным конечным результатом которых был бы переход тепла от тела менее нагретого к телу более нагретому. Такая формулировка второго закона термодинамики называется формулировкой Клаузиуса. Эту особенность тепловых процессов можно сформулировать в виде второго закона термодинамики: невозможны такие процессы, единственным конечным результатом которых был бы переход тепла от тела менее нагретого к телу более нагретому. Такая формулировка второго закона термодинамики называется формулировкой Клаузиуса.

Слайд 7





Можно предложить другую, эквивалентную формулировку второго закона, если заметить, что всегда существует возможность преобразовать в тепло любое количество механической работы, например, с помощью трения. Если бы были возможны процессы, единственным результатом которых был бы переход тепла в работу, то можно было бы использовать эту работу для нагревания более горячего тела. Значит, невозможны такие процессы, единственным конечным результатом которых было бы преобразование некоторого количества теплоты, полученного от тела в механическую работу. Эта формулировка называется формулировкой Кельвина. 
Можно предложить другую, эквивалентную формулировку второго закона, если заметить, что всегда существует возможность преобразовать в тепло любое количество механической работы, например, с помощью трения. Если бы были возможны процессы, единственным результатом которых был бы переход тепла в работу, то можно было бы использовать эту работу для нагревания более горячего тела. Значит, невозможны такие процессы, единственным конечным результатом которых было бы преобразование некоторого количества теплоты, полученного от тела в механическую работу. Эта формулировка называется формулировкой Кельвина.
Описание слайда:
Можно предложить другую, эквивалентную формулировку второго закона, если заметить, что всегда существует возможность преобразовать в тепло любое количество механической работы, например, с помощью трения. Если бы были возможны процессы, единственным результатом которых был бы переход тепла в работу, то можно было бы использовать эту работу для нагревания более горячего тела. Значит, невозможны такие процессы, единственным конечным результатом которых было бы преобразование некоторого количества теплоты, полученного от тела в механическую работу. Эта формулировка называется формулировкой Кельвина. Можно предложить другую, эквивалентную формулировку второго закона, если заметить, что всегда существует возможность преобразовать в тепло любое количество механической работы, например, с помощью трения. Если бы были возможны процессы, единственным результатом которых был бы переход тепла в работу, то можно было бы использовать эту работу для нагревания более горячего тела. Значит, невозможны такие процессы, единственным конечным результатом которых было бы преобразование некоторого количества теплоты, полученного от тела в механическую работу. Эта формулировка называется формулировкой Кельвина.

Слайд 8





Дальнейшие выводы из второго закона термодинамики удобнее всего получить с помощью метода, предложенного С. Карно, работы которого фактически и положили начало теоретической термодинамике. Карно рассматривал тепловые машины – устройства, которые преобразуют тепловую энергию в механическую работу 
Дальнейшие выводы из второго закона термодинамики удобнее всего получить с помощью метода, предложенного С. Карно, работы которого фактически и положили начало теоретической термодинамике. Карно рассматривал тепловые машины – устройства, которые преобразуют тепловую энергию в механическую работу
Описание слайда:
Дальнейшие выводы из второго закона термодинамики удобнее всего получить с помощью метода, предложенного С. Карно, работы которого фактически и положили начало теоретической термодинамике. Карно рассматривал тепловые машины – устройства, которые преобразуют тепловую энергию в механическую работу Дальнейшие выводы из второго закона термодинамики удобнее всего получить с помощью метода, предложенного С. Карно, работы которого фактически и положили начало теоретической термодинамике. Карно рассматривал тепловые машины – устройства, которые преобразуют тепловую энергию в механическую работу

Слайд 9





Схематически работу любой тепловой машины можно представить так. Тепловая машина обязательно имеет в своем составе рабочее тело или рабочее вещество – макроскопическое тело, которое и совершает механическую работу (рис.17). Рабочее тело совершает в ходе работы машины цикл или циклический процесс – процесс, при котором конечное состояние совпадает с начальным. 
Схематически работу любой тепловой машины можно представить так. Тепловая машина обязательно имеет в своем составе рабочее тело или рабочее вещество – макроскопическое тело, которое и совершает механическую работу (рис.17). Рабочее тело совершает в ходе работы машины цикл или циклический процесс – процесс, при котором конечное состояние совпадает с начальным.
Описание слайда:
Схематически работу любой тепловой машины можно представить так. Тепловая машина обязательно имеет в своем составе рабочее тело или рабочее вещество – макроскопическое тело, которое и совершает механическую работу (рис.17). Рабочее тело совершает в ходе работы машины цикл или циклический процесс – процесс, при котором конечное состояние совпадает с начальным. Схематически работу любой тепловой машины можно представить так. Тепловая машина обязательно имеет в своем составе рабочее тело или рабочее вещество – макроскопическое тело, которое и совершает механическую работу (рис.17). Рабочее тело совершает в ходе работы машины цикл или циклический процесс – процесс, при котором конечное состояние совпадает с начальным.

Слайд 10





Поскольку внутренняя энергия рабочего тела после совершения им цикла не изменяется, работа в цикле может совершаться только за счет того, что рабочему телу передается некоторое количество теплоты  от нагревателя – тела, имеющего постоянную температуру . Согласно второму закону термодинамики, невозможен процесс, единственным результатом которого было бы преобразование теплоты  целиком в работу. Поэтому, некоторое количество теплоты  должно передаваться при циклическом процессе холодильнику – телу, находящемуся при температуре , меньшей, чем 
Поскольку внутренняя энергия рабочего тела после совершения им цикла не изменяется, работа в цикле может совершаться только за счет того, что рабочему телу передается некоторое количество теплоты  от нагревателя – тела, имеющего постоянную температуру . Согласно второму закону термодинамики, невозможен процесс, единственным результатом которого было бы преобразование теплоты  целиком в работу. Поэтому, некоторое количество теплоты  должно передаваться при циклическом процессе холодильнику – телу, находящемуся при температуре , меньшей, чем
Описание слайда:
Поскольку внутренняя энергия рабочего тела после совершения им цикла не изменяется, работа в цикле может совершаться только за счет того, что рабочему телу передается некоторое количество теплоты от нагревателя – тела, имеющего постоянную температуру . Согласно второму закону термодинамики, невозможен процесс, единственным результатом которого было бы преобразование теплоты целиком в работу. Поэтому, некоторое количество теплоты должно передаваться при циклическом процессе холодильнику – телу, находящемуся при температуре , меньшей, чем Поскольку внутренняя энергия рабочего тела после совершения им цикла не изменяется, работа в цикле может совершаться только за счет того, что рабочему телу передается некоторое количество теплоты от нагревателя – тела, имеющего постоянную температуру . Согласно второму закону термодинамики, невозможен процесс, единственным результатом которого было бы преобразование теплоты целиком в работу. Поэтому, некоторое количество теплоты должно передаваться при циклическом процессе холодильнику – телу, находящемуся при температуре , меньшей, чем



Похожие презентации
Mypresentation.ru
Загрузить презентацию