🗊 Энергетика и экология

Категория: Обществознание
Нажмите для полного просмотра!
  
  Энергетика и экология  , слайд №1  
  Энергетика и экология  , слайд №2  
  Энергетика и экология  , слайд №3  
  Энергетика и экология  , слайд №4  
  Энергетика и экология  , слайд №5  
  Энергетика и экология  , слайд №6  
  Энергетика и экология  , слайд №7  
  Энергетика и экология  , слайд №8  
  Энергетика и экология  , слайд №9  
  Энергетика и экология  , слайд №10  
  Энергетика и экология  , слайд №11  
  Энергетика и экология  , слайд №12  
  Энергетика и экология  , слайд №13  
  Энергетика и экология  , слайд №14  
  Энергетика и экология  , слайд №15  
  Энергетика и экология  , слайд №16  
  Энергетика и экология  , слайд №17  
  Энергетика и экология  , слайд №18  
  Энергетика и экология  , слайд №19  
  Энергетика и экология  , слайд №20  
  Энергетика и экология  , слайд №21  
  Энергетика и экология  , слайд №22  
  Энергетика и экология  , слайд №23  
  Энергетика и экология  , слайд №24  
  Энергетика и экология  , слайд №25

Содержание

Вы можете ознакомиться и скачать Энергетика и экология . Презентация содержит 25 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Энергетика и экология
Описание слайда:
Энергетика и экология

Слайд 2





Тепловые элекстростанции
ТЕПЛОВАЯ ЭЛЕКТРОСТАНЦИЯ (ТЭС), электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. Первые ТЭС появились в кон. 19 в (в Нью-Йорке, Санкт-Петербурге, Берлине) и получили преимущественное распространение. В сер. 70-х гг. 20 в. ТЭС - основной вид электрической станции.
Описание слайда:
Тепловые элекстростанции ТЕПЛОВАЯ ЭЛЕКТРОСТАНЦИЯ (ТЭС), электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. Первые ТЭС появились в кон. 19 в (в Нью-Йорке, Санкт-Петербурге, Берлине) и получили преимущественное распространение. В сер. 70-х гг. 20 в. ТЭС - основной вид электрической станции.

Слайд 3


  
  Энергетика и экология  , слайд №3
Описание слайда:

Слайд 4





Среди ТЭС преобладают тепловые паротурбинные электростанции (ТПЭС), на которых тепловая энергия используется в парогенераторе для получения водяного пара высокого давления, приводящего во вращение ротор паровой турбины, соединённый с ротором электрического генератора (обычно синхронного генератора). 
Среди ТЭС преобладают тепловые паротурбинные электростанции (ТПЭС), на которых тепловая энергия используется в парогенераторе для получения водяного пара высокого давления, приводящего во вращение ротор паровой турбины, соединённый с ротором электрического генератора (обычно синхронного генератора).
Описание слайда:
Среди ТЭС преобладают тепловые паротурбинные электростанции (ТПЭС), на которых тепловая энергия используется в парогенераторе для получения водяного пара высокого давления, приводящего во вращение ротор паровой турбины, соединённый с ротором электрического генератора (обычно синхронного генератора). Среди ТЭС преобладают тепловые паротурбинные электростанции (ТПЭС), на которых тепловая энергия используется в парогенераторе для получения водяного пара высокого давления, приводящего во вращение ротор паровой турбины, соединённый с ротором электрического генератора (обычно синхронного генератора).

Слайд 5





ТПЭС, имеющие конденсационные турбины и не использующие тепло отработавшего пара для снабжения тепловой энергией внешних потребителей, называют конденсационными электростанциями (Государственная районная электрическая станция, или ГРЭС). ТЭС с приводом электрогенератора от газовой турбины называют газотурбинными электростанциями (ГТЭС)
ТПЭС, имеющие конденсационные турбины и не использующие тепло отработавшего пара для снабжения тепловой энергией внешних потребителей, называют конденсационными электростанциями (Государственная районная электрическая станция, или ГРЭС). ТЭС с приводом электрогенератора от газовой турбины называют газотурбинными электростанциями (ГТЭС)
Описание слайда:
ТПЭС, имеющие конденсационные турбины и не использующие тепло отработавшего пара для снабжения тепловой энергией внешних потребителей, называют конденсационными электростанциями (Государственная районная электрическая станция, или ГРЭС). ТЭС с приводом электрогенератора от газовой турбины называют газотурбинными электростанциями (ГТЭС) ТПЭС, имеющие конденсационные турбины и не использующие тепло отработавшего пара для снабжения тепловой энергией внешних потребителей, называют конденсационными электростанциями (Государственная районная электрическая станция, или ГРЭС). ТЭС с приводом электрогенератора от газовой турбины называют газотурбинными электростанциями (ГТЭС)

Слайд 6


  
  Энергетика и экология  , слайд №6
Описание слайда:

Слайд 7





ГИДРОЭЛЕКТРИЧЕСКАЯ СТАНЦИЯ
Описание слайда:
ГИДРОЭЛЕКТРИЧЕСКАЯ СТАНЦИЯ

Слайд 8





Гидроэлектростанция (ГЭС), комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в электрическую энергию. ГЭС состоит из последовательной цепи гидротехнических сооружений, обеспечивающих необходимую концентрацию потока воды и создание напора, и энергетического оборудования, преобразующего энергию движущейся под напором воды в механическую энергию вращения которая, в свою очередь, преобразуется в электрическую энергию. 
По максимально используемому напо­ру ГЭС делятся на высоконапорные (более 60 м), средненапорные (от 25 до 60 м) и низконапорные (от 3 до 25 м).
Гидроэлектростанция (ГЭС), комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в электрическую энергию. ГЭС состоит из последовательной цепи гидротехнических сооружений, обеспечивающих необходимую концентрацию потока воды и создание напора, и энергетического оборудования, преобразующего энергию движущейся под напором воды в механическую энергию вращения которая, в свою очередь, преобразуется в электрическую энергию. 
По максимально используемому напо­ру ГЭС делятся на высоконапорные (более 60 м), средненапорные (от 25 до 60 м) и низконапорные (от 3 до 25 м).
Описание слайда:
Гидроэлектростанция (ГЭС), комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в электрическую энергию. ГЭС состоит из последовательной цепи гидротехнических сооружений, обеспечивающих необходимую концентрацию потока воды и создание напора, и энергетического оборудования, преобразующего энергию движущейся под напором воды в механическую энергию вращения которая, в свою очередь, преобразуется в электрическую энергию. По максимально используемому напо­ру ГЭС делятся на высоконапорные (более 60 м), средненапорные (от 25 до 60 м) и низконапорные (от 3 до 25 м). Гидроэлектростанция (ГЭС), комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в электрическую энергию. ГЭС состоит из последовательной цепи гидротехнических сооружений, обеспечивающих необходимую концентрацию потока воды и создание напора, и энергетического оборудования, преобразующего энергию движущейся под напором воды в механическую энергию вращения которая, в свою очередь, преобразуется в электрическую энергию. По максимально используемому напо­ру ГЭС делятся на высоконапорные (более 60 м), средненапорные (от 25 до 60 м) и низконапорные (от 3 до 25 м).

Слайд 9





Принцип работы

Принцип работы ГЭС достаточно прост. Цепь гидротехнических сооружений обеспечивает необходимый напор воды, поступающей на лопасти гидротурбины, которая приводит в действие генераторы, вырабатывающие электроэнергию.
Необходимый напор воды образуется посредством строительства плотины, и как следствие концентрации реки в определенном месте, или деривацией — естественным током воды. В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию.
Непосредственно в самом здании гидроэлектростанции располагается все энергетическое оборудование. В зависимости от назначения, оно имеет свое определенное деление. В машинном зале расположены гидроагрегаты, непосредственно преобразующие энергию тока воды в электрическую энергию. Есть еще всевозможное дополнительное оборудование, устройства управления и контроля за работой ГЭС, трансформаторная станция, распределительные устройства и многое другое.
Описание слайда:
Принцип работы Принцип работы ГЭС достаточно прост. Цепь гидротехнических сооружений обеспечивает необходимый напор воды, поступающей на лопасти гидротурбины, которая приводит в действие генераторы, вырабатывающие электроэнергию. Необходимый напор воды образуется посредством строительства плотины, и как следствие концентрации реки в определенном месте, или деривацией — естественным током воды. В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию. Непосредственно в самом здании гидроэлектростанции располагается все энергетическое оборудование. В зависимости от назначения, оно имеет свое определенное деление. В машинном зале расположены гидроагрегаты, непосредственно преобразующие энергию тока воды в электрическую энергию. Есть еще всевозможное дополнительное оборудование, устройства управления и контроля за работой ГЭС, трансформаторная станция, распределительные устройства и многое другое.

Слайд 10


  
  Энергетика и экология  , слайд №10
Описание слайда:

Слайд 11





Гидроэлектрические станции разделяются в зависимости от вырабатываемой мощности:
Гидроэлектрические станции разделяются в зависимости от вырабатываемой мощности:
мощные — вырабатывают от 25 МВТ до 250 МВт и выше; 
средние — до 25 МВт; 
малые гидроэлектростанции — до 5 МВт.
Описание слайда:
Гидроэлектрические станции разделяются в зависимости от вырабатываемой мощности: Гидроэлектрические станции разделяются в зависимости от вырабатываемой мощности: мощные — вырабатывают от 25 МВТ до 250 МВт и выше; средние — до 25 МВт; малые гидроэлектростанции — до 5 МВт.

Слайд 12





Крупнейшие гидроэлектростанции России

Саяно-Шушенская ГЭС, Красноярская ГЭС, Братская ГЭС,  Усть-Илимская ГЭС
Описание слайда:
Крупнейшие гидроэлектростанции России Саяно-Шушенская ГЭС, Красноярская ГЭС, Братская ГЭС, Усть-Илимская ГЭС

Слайд 13





Атомные электростанции
Атомная электростанция(АЭС), электростанция, в которой атомная (ядерная) энергия преобразуется в электрическую. Генератором энергии на АЭС является атомный реактор. Тепло, которое выделяется в реакторе в результате цепной реакции деления ядер некоторых тяжёлых элементов, как и на обычных тепловых электростанциях (ТЭС), преобразуется в электроэнергию. В отличие от ТЭС, работающих на органическом топливе, АЭС работает на ядерном горючем .
Описание слайда:
Атомные электростанции Атомная электростанция(АЭС), электростанция, в которой атомная (ядерная) энергия преобразуется в электрическую. Генератором энергии на АЭС является атомный реактор. Тепло, которое выделяется в реакторе в результате цепной реакции деления ядер некоторых тяжёлых элементов, как и на обычных тепловых электростанциях (ТЭС), преобразуется в электроэнергию. В отличие от ТЭС, работающих на органическом топливе, АЭС работает на ядерном горючем .

Слайд 14


  
  Энергетика и экология  , слайд №14
Описание слайда:

Слайд 15





Принцип действия
Описание слайда:
Принцип действия

Слайд 16





Достоинства и недостатки
Достоинства атомных станций:
  
Небольшой объём используемого топлива и возможность его повторного использования после переработки.
Высокая мощность
Низкая себестоимость энергии, особенно тепловой. 
Возможность размещения в регионах, расположенных вдали от крупных водноэнергетических ресурсов, крупных месторождений угля, в местах, где ограничены возможности для использования солнечной или ветряной электроэнергетики. 
При работе АЭС в атмосферу выбрасывается некоторое количество ионизированного газа, однако обычная тепловая электростанция вместе с дымом выводит еще бо́льшее количество радиационных выбросов, из-за естественного содержания радиоактивных элементов в каменном угле. 
Недостатки атомных станций:
Облучённое топливо опасно, требует сложных и дорогих мер по переработке и хранению; 
С точки зрения статистики и страхования крупные аварии крайне маловероятны, однако последствия такого инцидента крайне тяжёлые; 
Большие капитальные вложения, необходимые для постройки станции, её инфраструктуры, а также в случае возможной ликвидации.
Описание слайда:
Достоинства и недостатки Достоинства атомных станций: Небольшой объём используемого топлива и возможность его повторного использования после переработки. Высокая мощность Низкая себестоимость энергии, особенно тепловой. Возможность размещения в регионах, расположенных вдали от крупных водноэнергетических ресурсов, крупных месторождений угля, в местах, где ограничены возможности для использования солнечной или ветряной электроэнергетики. При работе АЭС в атмосферу выбрасывается некоторое количество ионизированного газа, однако обычная тепловая электростанция вместе с дымом выводит еще бо́льшее количество радиационных выбросов, из-за естественного содержания радиоактивных элементов в каменном угле. Недостатки атомных станций: Облучённое топливо опасно, требует сложных и дорогих мер по переработке и хранению; С точки зрения статистики и страхования крупные аварии крайне маловероятны, однако последствия такого инцидента крайне тяжёлые; Большие капитальные вложения, необходимые для постройки станции, её инфраструктуры, а также в случае возможной ликвидации.

Слайд 17





Нетрадиционные источники электроэнергии
Каковы же эти нетрадиционные и возобновляемые источники энергии? К ним обычно относят солнечную, ветровую и геотермальную энергию, энергию морских приливов и волн,  биомассы (растения, различные виды органических отходов), низкопотенциальную энергию окружающей среды, также принято относить малые ГЭС, которые отличаются от традиционных - более крупных - ГЭС только масштабом.
Описание слайда:
Нетрадиционные источники электроэнергии Каковы же эти нетрадиционные и возобновляемые источники энергии? К ним обычно относят солнечную, ветровую и геотермальную энергию, энергию морских приливов и волн,  биомассы (растения, различные виды органических отходов), низкопотенциальную энергию окружающей среды, также принято относить малые ГЭС, которые отличаются от традиционных - более крупных - ГЭС только масштабом.

Слайд 18





Поле зеркал-гелиостатов Крымской солнечной электростанции
Описание слайда:
Поле зеркал-гелиостатов Крымской солнечной электростанции

Слайд 19





Ветровая электростанция
Описание слайда:
Ветровая электростанция

Слайд 20





Геотермальные элекстростанции
Описание слайда:
Геотермальные элекстростанции

Слайд 21





Приливная электростанция
Описание слайда:
Приливная электростанция

Слайд 22





Энергия биомассы
Описание слайда:
Энергия биомассы

Слайд 23





Плюсы и минусы нетрадиционных возобновляемых источниках энергии
Указанные источники энергии имеют как положительные, так и отрицательные свойства. К положительным относятся повсеместная распространенность большинства их видов, экологическая чистота. Эксплуатационные затраты по использованию нетрадиционных источников не содержат топливной составляющей, так как энергия этих источников как бы бесплатная.
Отрицательные качества - это малая плотность потока (удельная мощность) и изменчивость во времени большинства НВИЭ. Первое обстоятельство заставляет создавать большие площади энергоустановок, «перехватывающие» поток используемой энергии (приемные поверхности солнечных установок, площадь ветроколеса, протяженные плотины приливных электростанций и т.п.). Это приводит к большой материалоемкости подобных устройств, а, следовательно, к увеличению удельных капиталовложений по сравнению с традиционными энергоустановками. Правда, повышенные капиталовложения впоследствии окупаются за счет низких эксплуатационных затрат.
Описание слайда:
Плюсы и минусы нетрадиционных возобновляемых источниках энергии Указанные источники энергии имеют как положительные, так и отрицательные свойства. К положительным относятся повсеместная распространенность большинства их видов, экологическая чистота. Эксплуатационные затраты по использованию нетрадиционных источников не содержат топливной составляющей, так как энергия этих источников как бы бесплатная. Отрицательные качества - это малая плотность потока (удельная мощность) и изменчивость во времени большинства НВИЭ. Первое обстоятельство заставляет создавать большие площади энергоустановок, «перехватывающие» поток используемой энергии (приемные поверхности солнечных установок, площадь ветроколеса, протяженные плотины приливных электростанций и т.п.). Это приводит к большой материалоемкости подобных устройств, а, следовательно, к увеличению удельных капиталовложений по сравнению с традиционными энергоустановками. Правда, повышенные капиталовложения впоследствии окупаются за счет низких эксплуатационных затрат.

Слайд 24





Термоядерная электростанция

В настоящее время ученые работают над созданием а Термоядерной электростанции, преимуществом которых является обеспечение человечества электроэнергией на неограниченное время. Термоядерная электростанция работает на основе термоядерного синтеза — реакции синтеза тяжелых изотопов водорода с образованием гелия и выделением энергии. Реакция термоядерного синтеза не дает газообразных и жидких радиоактивных отходов, не нарабатывает плутоний, который используется для производства ядерного оружия. Если еще учесть, что горючим для термоядерных станций будет тяжелый изотоп водорода дейтерий, который получают из простой воды — в полулитре воды заключена энергия синтеза, эквивалентная той, что получится при сжигании бочки бензина, — то преимущества электростанций, основанных на термоядерной реакции, становятся очевидными.
Описание слайда:
Термоядерная электростанция В настоящее время ученые работают над созданием а Термоядерной электростанции, преимуществом которых является обеспечение человечества электроэнергией на неограниченное время. Термоядерная электростанция работает на основе термоядерного синтеза — реакции синтеза тяжелых изотопов водорода с образованием гелия и выделением энергии. Реакция термоядерного синтеза не дает газообразных и жидких радиоактивных отходов, не нарабатывает плутоний, который используется для производства ядерного оружия. Если еще учесть, что горючим для термоядерных станций будет тяжелый изотоп водорода дейтерий, который получают из простой воды — в полулитре воды заключена энергия синтеза, эквивалентная той, что получится при сжигании бочки бензина, — то преимущества электростанций, основанных на термоядерной реакции, становятся очевидными.

Слайд 25





Интернациональный термоядерный реактор
Описание слайда:
Интернациональный термоядерный реактор



Похожие презентации
Mypresentation.ru
Загрузить презентацию