🗊Презентация СТРОЕНИЕ КЛЕТКИ

Категория: Образование
Нажмите для полного просмотра!
СТРОЕНИЕ КЛЕТКИ, слайд №1СТРОЕНИЕ КЛЕТКИ, слайд №2СТРОЕНИЕ КЛЕТКИ, слайд №3СТРОЕНИЕ КЛЕТКИ, слайд №4СТРОЕНИЕ КЛЕТКИ, слайд №5СТРОЕНИЕ КЛЕТКИ, слайд №6СТРОЕНИЕ КЛЕТКИ, слайд №7СТРОЕНИЕ КЛЕТКИ, слайд №8СТРОЕНИЕ КЛЕТКИ, слайд №9СТРОЕНИЕ КЛЕТКИ, слайд №10СТРОЕНИЕ КЛЕТКИ, слайд №11СТРОЕНИЕ КЛЕТКИ, слайд №12СТРОЕНИЕ КЛЕТКИ, слайд №13СТРОЕНИЕ КЛЕТКИ, слайд №14СТРОЕНИЕ КЛЕТКИ, слайд №15СТРОЕНИЕ КЛЕТКИ, слайд №16СТРОЕНИЕ КЛЕТКИ, слайд №17СТРОЕНИЕ КЛЕТКИ, слайд №18СТРОЕНИЕ КЛЕТКИ, слайд №19СТРОЕНИЕ КЛЕТКИ, слайд №20СТРОЕНИЕ КЛЕТКИ, слайд №21СТРОЕНИЕ КЛЕТКИ, слайд №22СТРОЕНИЕ КЛЕТКИ, слайд №23СТРОЕНИЕ КЛЕТКИ, слайд №24СТРОЕНИЕ КЛЕТКИ, слайд №25СТРОЕНИЕ КЛЕТКИ, слайд №26СТРОЕНИЕ КЛЕТКИ, слайд №27СТРОЕНИЕ КЛЕТКИ, слайд №28СТРОЕНИЕ КЛЕТКИ, слайд №29СТРОЕНИЕ КЛЕТКИ, слайд №30СТРОЕНИЕ КЛЕТКИ, слайд №31СТРОЕНИЕ КЛЕТКИ, слайд №32СТРОЕНИЕ КЛЕТКИ, слайд №33СТРОЕНИЕ КЛЕТКИ, слайд №34СТРОЕНИЕ КЛЕТКИ, слайд №35СТРОЕНИЕ КЛЕТКИ, слайд №36СТРОЕНИЕ КЛЕТКИ, слайд №37

Содержание

Вы можете ознакомиться и скачать презентацию на тему СТРОЕНИЕ КЛЕТКИ. Доклад-сообщение содержит 37 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1


СТРОЕНИЕ КЛЕТКИ, слайд №1
Описание слайда:

Слайд 2





Этапы формирования и развития представлений о клетке
Зарождение понятий о клетке
1590г. Братья Янсены (изобретение микроскопа),
1665г. Р. Гук (ввел термин «клетка»),
1680г. А.Левенгук (открыл одноклеточные организмы),
1831г. Р.Броун (открытие ядра).
Описание слайда:
Этапы формирования и развития представлений о клетке Зарождение понятий о клетке 1590г. Братья Янсены (изобретение микроскопа), 1665г. Р. Гук (ввел термин «клетка»), 1680г. А.Левенгук (открыл одноклеточные организмы), 1831г. Р.Броун (открытие ядра).

Слайд 3





Этапы формирования и развития представлений о клетке
Возникновение клеточной теории.
1838г. Т.Шлейден (сформулировал вывод: ткани растений состоят из клеток),
1839г.  М.Шванн (ткани животных состоят из клеток. Обобщил знания о клетке, сформулировал основное положение клеточной теории: клетки представляют собой структурную и функциональную основу всех живых существ).
Описание слайда:
Этапы формирования и развития представлений о клетке Возникновение клеточной теории. 1838г. Т.Шлейден (сформулировал вывод: ткани растений состоят из клеток), 1839г. М.Шванн (ткани животных состоят из клеток. Обобщил знания о клетке, сформулировал основное положение клеточной теории: клетки представляют собой структурную и функциональную основу всех живых существ).

Слайд 4





Этапы формирования и развития представлений о клетке
Развитие клеточной теории.
1858г. Р.Вирхов.(утверждал, что каждая новая клетка происходит только от клетки в результате ее деления),
1930г. – создание электронного микроскопа.
Описание слайда:
Этапы формирования и развития представлений о клетке Развитие клеточной теории. 1858г. Р.Вирхов.(утверждал, что каждая новая клетка происходит только от клетки в результате ее деления), 1930г. – создание электронного микроскопа.

Слайд 5





Клеточная теория
клетка – основная единица строения и развития всех живых организмов;
клетки всех организмов сходны по своему строению, химическому составу, основным проявлениям жизнедеятельности;
каждая новая клетка образуется в результате деления исходной (материнской) клетки;
в многоклеточных организмах клетки специализированы по выполняемой ими функции и образуют ткани. Из тканей состоят органы, которые тесно связаны между собой и подчинены системам регуляции.
Описание слайда:
Клеточная теория клетка – основная единица строения и развития всех живых организмов; клетки всех организмов сходны по своему строению, химическому составу, основным проявлениям жизнедеятельности; каждая новая клетка образуется в результате деления исходной (материнской) клетки; в многоклеточных организмах клетки специализированы по выполняемой ими функции и образуют ткани. Из тканей состоят органы, которые тесно связаны между собой и подчинены системам регуляции.

Слайд 6





Ткани
    Практически все ткани многоклеточных организмов состоят из клеток. С другой стороны, слизевики состоят из неразделённой перегородками клеточной массы со множеством ядер. Сходным образом устроена и сердечная мышца животных. Ряд структур организма (раковины, жемчужины, минеральная основа костей) образованы не клетками, а продуктами их секреции.
Описание слайда:
Ткани Практически все ткани многоклеточных организмов состоят из клеток. С другой стороны, слизевики состоят из неразделённой перегородками клеточной массы со множеством ядер. Сходным образом устроена и сердечная мышца животных. Ряд структур организма (раковины, жемчужины, минеральная основа костей) образованы не клетками, а продуктами их секреции.

Слайд 7





Слизевики
 Слизевики состоят из неразделённой перегородками клеточной массы со множеством ядер.
Описание слайда:
Слизевики Слизевики состоят из неразделённой перегородками клеточной массы со множеством ядер.

Слайд 8





Мелкие организмы могут состоять всего лишь из сотен клеток. Организм человека включает в себя 1014 разновидностей клеток. Самая маленькая из известных сейчас клеток имеет размер 0,2 мкм, самая большая – неоплодотворенное яйцо эпиорниса – весит около 3,5 кг. Типичные размеры растительных и животных клеток составляют от 5 до 20 мкм. При этом между размерами организмов и размерами их клеток прямой зависимости обычно нет.
Мелкие организмы могут состоять всего лишь из сотен клеток. Организм человека включает в себя 1014 разновидностей клеток. Самая маленькая из известных сейчас клеток имеет размер 0,2 мкм, самая большая – неоплодотворенное яйцо эпиорниса – весит около 3,5 кг. Типичные размеры растительных и животных клеток составляют от 5 до 20 мкм. При этом между размерами организмов и размерами их клеток прямой зависимости обычно нет.
Описание слайда:
Мелкие организмы могут состоять всего лишь из сотен клеток. Организм человека включает в себя 1014 разновидностей клеток. Самая маленькая из известных сейчас клеток имеет размер 0,2 мкм, самая большая – неоплодотворенное яйцо эпиорниса – весит около 3,5 кг. Типичные размеры растительных и животных клеток составляют от 5 до 20 мкм. При этом между размерами организмов и размерами их клеток прямой зависимости обычно нет. Мелкие организмы могут состоять всего лишь из сотен клеток. Организм человека включает в себя 1014 разновидностей клеток. Самая маленькая из известных сейчас клеток имеет размер 0,2 мкм, самая большая – неоплодотворенное яйцо эпиорниса – весит около 3,5 кг. Типичные размеры растительных и животных клеток составляют от 5 до 20 мкм. При этом между размерами организмов и размерами их клеток прямой зависимости обычно нет.

Слайд 9





Слева истреблённый несколько веков назад эпиорнис. Справа – его яйцо, найденное на Мадагаскаре. 
Слева истреблённый несколько веков назад эпиорнис. Справа – его яйцо, найденное на Мадагаскаре.
Описание слайда:
Слева истреблённый несколько веков назад эпиорнис. Справа – его яйцо, найденное на Мадагаскаре. Слева истреблённый несколько веков назад эпиорнис. Справа – его яйцо, найденное на Мадагаскаре.

Слайд 10





Клеточные структуры и их функции.
Клетка:
Ядро
Цитоплазма
Поверхностный аппарат
Особенности растительных клеток
Описание слайда:
Клеточные структуры и их функции. Клетка: Ядро Цитоплазма Поверхностный аппарат Особенности растительных клеток

Слайд 11





Поверхностный аппарат клеток
Для того, чтобы поддерживать в себе необходимую концентрацию веществ, клетка должна быть физически отделена от своего окружения. Вместе с тем, жизнедеятельность организма предполагает интенсивный обмен веществ между клетками. Роль барьера между клетками играет поверхностный аппарат клеток, который состоит из:
Описание слайда:
Поверхностный аппарат клеток Для того, чтобы поддерживать в себе необходимую концентрацию веществ, клетка должна быть физически отделена от своего окружения. Вместе с тем, жизнедеятельность организма предполагает интенсивный обмен веществ между клетками. Роль барьера между клетками играет поверхностный аппарат клеток, который состоит из:

Слайд 12





Состав и строение наружной плазматической мембраны
Двойной слой липидов,
Белки,
Углеводы.
Описание слайда:
Состав и строение наружной плазматической мембраны Двойной слой липидов, Белки, Углеводы.

Слайд 13





Основные функции поверхностного аппарата
Ограничение внутренней среды клетки, сохранение ее формы,
Защита от повреждений,
Рецепторная функция;
Транспорт веществ через плазматические мембраны
(трансмембранный транспорт),
Транспорт в мембранной упаковке (эндоцитоз и экзоцитоз ).
Описание слайда:
Основные функции поверхностного аппарата Ограничение внутренней среды клетки, сохранение ее формы, Защита от повреждений, Рецепторная функция; Транспорт веществ через плазматические мембраны (трансмембранный транспорт), Транспорт в мембранной упаковке (эндоцитоз и экзоцитоз ).

Слайд 14





Транспорт веществ через плазматические мембраны
   Важной проблемой является транспорт веществ через плазматические мембраны. Он необходим для доставки питательных веществ в клетку, вывода токсичных отходов, создания градиентов для поддержания нервной и мышечной активности. Существуют следующие механизмы транспорта веществ через мембрану:
диффузия 
осмос 
активный транспорт
Описание слайда:
Транспорт веществ через плазматические мембраны Важной проблемой является транспорт веществ через плазматические мембраны. Он необходим для доставки питательных веществ в клетку, вывода токсичных отходов, создания градиентов для поддержания нервной и мышечной активности. Существуют следующие механизмы транспорта веществ через мембрану: диффузия осмос активный транспорт

Слайд 15





Диффузия, осмос
диффузия обеспечивает перемещение маленьких, незаряженных молекул  по градиенту концентрации между молекулами липидов (газы, жирорастворимые молекулы проникают прямо через плазматическую мембрану); 
при облегчённой диффузии растворимое в воде вещество (глюкоза, аминокислоты, нуклеотиды) проходит через мембрану по особому каналу, создаваемому белком-переносчиком; 
осмос (диффузия воды через полупроницаемые мембраны); 
Процессы не требуют дополнительной энергии.
Описание слайда:
Диффузия, осмос диффузия обеспечивает перемещение маленьких, незаряженных молекул по градиенту концентрации между молекулами липидов (газы, жирорастворимые молекулы проникают прямо через плазматическую мембрану); при облегчённой диффузии растворимое в воде вещество (глюкоза, аминокислоты, нуклеотиды) проходит через мембрану по особому каналу, создаваемому белком-переносчиком; осмос (диффузия воды через полупроницаемые мембраны); Процессы не требуют дополнительной энергии.

Слайд 16





Активный транспорт
активный транспорт - перенос молекул  Na+ и K+, H+ из области с меньшей концентрацией в область с большей (против градиента концентраций) посредством специальных транспортных белков.
 Процесс требует затраты энергии АТФ
Описание слайда:
Активный транспорт активный транспорт - перенос молекул Na+ и K+, H+ из области с меньшей концентрацией в область с большей (против градиента концентраций) посредством специальных транспортных белков. Процесс требует затраты энергии АТФ

Слайд 17





Натрий-калиевый насос 
Обмен осуществляется при помощи специальных белков, образующих в мембране так называемые каналы. На рисунке показана работа такого канала (насоса), обеспечивающего движение ионов натрия и калия через клеточную мембрану.
Описание слайда:
Натрий-калиевый насос Обмен осуществляется при помощи специальных белков, образующих в мембране так называемые каналы. На рисунке показана работа такого канала (насоса), обеспечивающего движение ионов натрия и калия через клеточную мембрану.

Слайд 18





Натрий-калиевый насос 
     Внутриклеточная часть белка расщепляет молекулы АТФ. Это обеспечивает выведение из клетки трех ионов натрия и поступление двух ионов калия. Таким образом внутри клетки поддерживается высокая концентрация калия (в 35 раз выше, чем вне клетки) и низкая концентрация натрия (в 14 раз ниже внеклеточной). Это важно для создания электрических потенциалов на мембранах, процесса возбуждения в нервных и мышечных клетках, нормального протекания других внутриклеточных процессов.
Описание слайда:
Натрий-калиевый насос Внутриклеточная часть белка расщепляет молекулы АТФ. Это обеспечивает выведение из клетки трех ионов натрия и поступление двух ионов калия. Таким образом внутри клетки поддерживается высокая концентрация калия (в 35 раз выше, чем вне клетки) и низкая концентрация натрия (в 14 раз ниже внеклеточной). Это важно для создания электрических потенциалов на мембранах, процесса возбуждения в нервных и мышечных клетках, нормального протекания других внутриклеточных процессов.

Слайд 19





Эндоцитоз
при эндоцитозе мембрана образует впячивания, которые затем трансформируются в пузырьки или вакуоли. 
! процесс требует дополнительной энергии
Описание слайда:
Эндоцитоз при эндоцитозе мембрана образует впячивания, которые затем трансформируются в пузырьки или вакуоли. ! процесс требует дополнительной энергии

Слайд 20





Экзоцитоз
экзоцитоз – процесс, обратный эндоцитозу; из клеток выводятся непереварившиеся остатки твёрдых частиц и жидкий секрет. 
! процесс требует дополнительной энергии
Описание слайда:
Экзоцитоз экзоцитоз – процесс, обратный эндоцитозу; из клеток выводятся непереварившиеся остатки твёрдых частиц и жидкий секрет. ! процесс требует дополнительной энергии

Слайд 21





Цитоплазма
1. Основние вещество цитоплазмы – гиалоплазма (существует в 2 формах: золь - более жидкая и 
      гель – более густая.
2. Органеллы – постоянные компоненты.
3. Включения –временные компоненты.
 Свойство цитоплазмы – циклоз (постоянное движение)
Описание слайда:
Цитоплазма 1. Основние вещество цитоплазмы – гиалоплазма (существует в 2 формах: золь - более жидкая и гель – более густая. 2. Органеллы – постоянные компоненты. 3. Включения –временные компоненты. Свойство цитоплазмы – циклоз (постоянное движение)

Слайд 22





Основные органеллы 
Мембранные
Митохондрии 
Эндоплазматическая сеть
Аппарат Гольджи
Пластиды
Лизосомы
Немембранные
Рибосомы
Вакуоли
Клеточный центр 
Органеллы движения
Описание слайда:
Основные органеллы Мембранные Митохондрии Эндоплазматическая сеть Аппарат Гольджи Пластиды Лизосомы Немембранные Рибосомы Вакуоли Клеточный центр Органеллы движения

Слайд 23





Митохондрии
Состав и строение:
2 Мембраны 
Наружная
Внутренняя(образует выросты – кристы)
Матрикс (внутреннее полужидкое содержимое, включающее ДНК, РНК, белок и рибосомы)
Функции:
Синтез АТФ
Синтез собственных органических веществ,
Образование собственных рибосом.
Описание слайда:
Митохондрии Состав и строение: 2 Мембраны Наружная Внутренняя(образует выросты – кристы) Матрикс (внутреннее полужидкое содержимое, включающее ДНК, РНК, белок и рибосомы) Функции: Синтез АТФ Синтез собственных органических веществ, Образование собственных рибосом.

Слайд 24





Эндоплазматическая сеть
Строение
1 мембрана образует:
Полости
Канальцы
Трубочки
На поверхности мембран – рибосомы
Функции:
Синтез органических веществ (с помощью рибосом)
Транспорт веществ
Описание слайда:
Эндоплазматическая сеть Строение 1 мембрана образует: Полости Канальцы Трубочки На поверхности мембран – рибосомы Функции: Синтез органических веществ (с помощью рибосом) Транспорт веществ

Слайд 25





Аппарат Гольджи
Строение
Окруженные мембранами полости (цистерны) и связанная с ними система пузырьков.
Функции
Накопление органических веществ
«Упаковка» органических веществ
Выведение органических веществ
Образование лизосом
Описание слайда:
Аппарат Гольджи Строение Окруженные мембранами полости (цистерны) и связанная с ними система пузырьков. Функции Накопление органических веществ «Упаковка» органических веществ Выведение органических веществ Образование лизосом

Слайд 26





Пластиды
Строение
2 мембраны
Наружная
Внутренняя (содержащие хлорофилл граны, собранные из стопки тилакоидных мембран)
Матрикс (внутренняя полужидкая среда, содержащая белки, ДНК, РНК и рибосомы)
Описание слайда:
Пластиды Строение 2 мембраны Наружная Внутренняя (содержащие хлорофилл граны, собранные из стопки тилакоидных мембран) Матрикс (внутренняя полужидкая среда, содержащая белки, ДНК, РНК и рибосомы)

Слайд 27





Лизосомы
Строение:
Пузырьки овальной формы (снаружи – мембрана, внутри – ферменты)
Описание слайда:
Лизосомы Строение: Пузырьки овальной формы (снаружи – мембрана, внутри – ферменты)

Слайд 28





Немембранные
органеллы. Рибосомы
Строение:
Малая
Большая
Состав:
 РНК (рибосомная)
Белки.
Функции:
Обеспечивает биосинтез белка (сборку белковой молекулы из аминокислот).
Описание слайда:
Немембранные органеллы. Рибосомы Строение: Малая Большая Состав: РНК (рибосомная) Белки. Функции: Обеспечивает биосинтез белка (сборку белковой молекулы из аминокислот).

Слайд 29





Клеточный центр
Строение:
2 Центриоли (расположены перпендикулярно друг другу)
Состав центриолей:
Белковые микротрубочки.
Свойства: способны к удвоению
Функции:
Принимает участие в делении клеток животных и низших растений
Описание слайда:
Клеточный центр Строение: 2 Центриоли (расположены перпендикулярно друг другу) Состав центриолей: Белковые микротрубочки. Свойства: способны к удвоению Функции: Принимает участие в делении клеток животных и низших растений

Слайд 30





Органеллы движения
Реснички (многочисленные цитоплазматические выросты на мембране).
Жгутики (единичные цитоплазматические выросты на мембране).
Псевдоподии (амебовидные выступы цитоплазмы).
Миофибриллы (тонкие нити длиной до 1 см.).
Описание слайда:
Органеллы движения Реснички (многочисленные цитоплазматические выросты на мембране). Жгутики (единичные цитоплазматические выросты на мембране). Псевдоподии (амебовидные выступы цитоплазмы). Миофибриллы (тонкие нити длиной до 1 см.).

Слайд 31





Ядро 

Ядро имеется в клетках всех эукариот за исключением эритроцитов млекопитающих. У некоторых простейших имеются два ядра, но как правило, клетка содержит только одно ядро. Ядро обычно принимает форму шара или яйца; по размерам (10–20 мкм) оно является самой крупной из органелл.
Описание слайда:
Ядро Ядро имеется в клетках всех эукариот за исключением эритроцитов млекопитающих. У некоторых простейших имеются два ядра, но как правило, клетка содержит только одно ядро. Ядро обычно принимает форму шара или яйца; по размерам (10–20 мкм) оно является самой крупной из органелл.

Слайд 32





Ядро
Строение:
1. Ядерная оболочка (2 мембранная):
Наружная мембрана
Внутренняя мембрана.
2. Ядерный сок (белки, ДНК, вода, мин. соли).
3. Ядрышко (белок и р-РНК).
4. Хромосомы (хроматин):
ДНК
Белок.
Описание слайда:
Ядро Строение: 1. Ядерная оболочка (2 мембранная): Наружная мембрана Внутренняя мембрана. 2. Ядерный сок (белки, ДНК, вода, мин. соли). 3. Ядрышко (белок и р-РНК). 4. Хромосомы (хроматин): ДНК Белок.

Слайд 33





Ядро
Функции:
Регуляция процесса обмена веществ,
Хранение наследственной информации и ее воспроизводство,
Синтез РНК,
Сборка рибосом (рибосомальный белок + рибосомальная РНК)
Описание слайда:
Ядро Функции: Регуляция процесса обмена веществ, Хранение наследственной информации и ее воспроизводство, Синтез РНК, Сборка рибосом (рибосомальный белок + рибосомальная РНК)

Слайд 34





Пероксисома
Пероксисомы (микротельца) имеют округлые очертания и окружены мембраной. Их размер не превышает 1,5 мкм. Пероксисомы связаны с эндоплазматической сетью и содержат ряд важных ферментов, в частности, каталазу, участвующую в разложении перекиси водорода.
Описание слайда:
Пероксисома Пероксисомы (микротельца) имеют округлые очертания и окружены мембраной. Их размер не превышает 1,5 мкм. Пероксисомы связаны с эндоплазматической сетью и содержат ряд важных ферментов, в частности, каталазу, участвующую в разложении перекиси водорода.

Слайд 35





Цитоскелет, микрофиламенты
Микротрубочки представляют собой достаточно жёсткие структуры и поддерживают форму клетки, образуя своеобразный цитоскелет. С опорой и движением связана и ещё одна форма органелл – микрофиламенты – тонкие белковые нити диаметром 5–7 нм.
Описание слайда:
Цитоскелет, микрофиламенты Микротрубочки представляют собой достаточно жёсткие структуры и поддерживают форму клетки, образуя своеобразный цитоскелет. С опорой и движением связана и ещё одна форма органелл – микрофиламенты – тонкие белковые нити диаметром 5–7 нм.

Слайд 36





Особенности растительных клеток
В растительных клетках присутствуют все органеллы, обнаруженные в животных клетках (за исключением центриолей). Однако имеются в них и свойственные только для растений структуры.
Клеточные стенки растений состоят из целлюлозы, образующей микрофибриллы. В клетках древовидных растений слои целлюлозы пропитываются лигнином, придающим им дополнительную жёсткость.
Описание слайда:
Особенности растительных клеток В растительных клетках присутствуют все органеллы, обнаруженные в животных клетках (за исключением центриолей). Однако имеются в них и свойственные только для растений структуры. Клеточные стенки растений состоят из целлюлозы, образующей микрофибриллы. В клетках древовидных растений слои целлюлозы пропитываются лигнином, придающим им дополнительную жёсткость.

Слайд 37





Вакуоли
Вакуоль – наполненный жидкостью мембранный мешочек. В животных клетках могут наблюдаться небольшие вакуоли, выполняющие фагоцитарную, пищеварительную, сократительную и другие функции. Растительные клетки имеют одну большую центральную вакуоль. Жидкость, заполняющая её, называется клеточным соком. Это концентрированный раствор сахаров, минеральных солей, органических кислот, пигментов и других веществ. Вакуоли накапливают воду, могут содержать красящие пигменты, защитные вещества (например, таннины), гидролитические ферменты, вызывающие автолиз клетки, отходы жизнедеятельности, запасные питательные вещества.
Описание слайда:
Вакуоли Вакуоль – наполненный жидкостью мембранный мешочек. В животных клетках могут наблюдаться небольшие вакуоли, выполняющие фагоцитарную, пищеварительную, сократительную и другие функции. Растительные клетки имеют одну большую центральную вакуоль. Жидкость, заполняющая её, называется клеточным соком. Это концентрированный раствор сахаров, минеральных солей, органических кислот, пигментов и других веществ. Вакуоли накапливают воду, могут содержать красящие пигменты, защитные вещества (например, таннины), гидролитические ферменты, вызывающие автолиз клетки, отходы жизнедеятельности, запасные питательные вещества.



Похожие презентации
Mypresentation.ru
Загрузить презентацию