🗊Мир невозможных фигур

Категория: Геометрия
Нажмите для полного просмотра!
Мир невозможных фигур, слайд №1Мир невозможных фигур, слайд №2Мир невозможных фигур, слайд №3Мир невозможных фигур, слайд №4Мир невозможных фигур, слайд №5Мир невозможных фигур, слайд №6Мир невозможных фигур, слайд №7Мир невозможных фигур, слайд №8Мир невозможных фигур, слайд №9Мир невозможных фигур, слайд №10Мир невозможных фигур, слайд №11Мир невозможных фигур, слайд №12Мир невозможных фигур, слайд №13Мир невозможных фигур, слайд №14Мир невозможных фигур, слайд №15Мир невозможных фигур, слайд №16Мир невозможных фигур, слайд №17Мир невозможных фигур, слайд №18Мир невозможных фигур, слайд №19Мир невозможных фигур, слайд №20Мир невозможных фигур, слайд №21Мир невозможных фигур, слайд №22Мир невозможных фигур, слайд №23Мир невозможных фигур, слайд №24Мир невозможных фигур, слайд №25Мир невозможных фигур, слайд №26Мир невозможных фигур, слайд №27Мир невозможных фигур, слайд №28Мир невозможных фигур, слайд №29Мир невозможных фигур, слайд №30

Содержание

Вы можете ознакомиться и скачать Мир невозможных фигур. Презентация содержит 30 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Мир невозможных фигур
Описание слайда:
Мир невозможных фигур

Слайд 2





Мир невозможных фигур
Аннотация
Введение
Историческая справка
Невозможные фигуры в реальном мире
О пользе имп-арта
Оптические обманы в геометрии
Задание для исследовательской работы
Невозможные фигуры из бумаги и дерева
Заключение
Описание слайда:
Мир невозможных фигур Аннотация Введение Историческая справка Невозможные фигуры в реальном мире О пользе имп-арта Оптические обманы в геометрии Задание для исследовательской работы Невозможные фигуры из бумаги и дерева Заключение

Слайд 3





Аннотация
Описание слайда:
Аннотация

Слайд 4





Введение
Описание слайда:
Введение

Слайд 5





Историческая справка
Описание слайда:
Историческая справка

Слайд 6


Мир невозможных фигур, слайд №6
Описание слайда:

Слайд 7





        Намеренное использование невозможных объектов в дизайне встречалось еще в древние времена до появления классической перспективы. Художники пытались найти новые решения. Примером может служить датируемое XV веком изображение Благовещения на фреске собора Св. Марии в голландском городе Бреда. На картине изображен архангел Гавриил, приносящий Марии весть о ее будущем Сыне. Фреска обрамлена двумя арками, поддерживаемыми, в свою очередь тремя колоннами. Однако следует обратить внимание на среднюю колонну. В отличие от других, она исчезает на заднем плане за плитой. С практической точки зрения, художник использовал эту "невозможность" как особую технику, позволяющую избежать разделения сцены на две половины.
        Намеренное использование невозможных объектов в дизайне встречалось еще в древние времена до появления классической перспективы. Художники пытались найти новые решения. Примером может служить датируемое XV веком изображение Благовещения на фреске собора Св. Марии в голландском городе Бреда. На картине изображен архангел Гавриил, приносящий Марии весть о ее будущем Сыне. Фреска обрамлена двумя арками, поддерживаемыми, в свою очередь тремя колоннами. Однако следует обратить внимание на среднюю колонну. В отличие от других, она исчезает на заднем плане за плитой. С практической точки зрения, художник использовал эту "невозможность" как особую технику, позволяющую избежать разделения сцены на две половины.
Описание слайда:
Намеренное использование невозможных объектов в дизайне встречалось еще в древние времена до появления классической перспективы. Художники пытались найти новые решения. Примером может служить датируемое XV веком изображение Благовещения на фреске собора Св. Марии в голландском городе Бреда. На картине изображен архангел Гавриил, приносящий Марии весть о ее будущем Сыне. Фреска обрамлена двумя арками, поддерживаемыми, в свою очередь тремя колоннами. Однако следует обратить внимание на среднюю колонну. В отличие от других, она исчезает на заднем плане за плитой. С практической точки зрения, художник использовал эту "невозможность" как особую технику, позволяющую избежать разделения сцены на две половины. Намеренное использование невозможных объектов в дизайне встречалось еще в древние времена до появления классической перспективы. Художники пытались найти новые решения. Примером может служить датируемое XV веком изображение Благовещения на фреске собора Св. Марии в голландском городе Бреда. На картине изображен архангел Гавриил, приносящий Марии весть о ее будущем Сыне. Фреска обрамлена двумя арками, поддерживаемыми, в свою очередь тремя колоннами. Однако следует обратить внимание на среднюю колонну. В отличие от других, она исчезает на заднем плане за плитой. С практической точки зрения, художник использовал эту "невозможность" как особую технику, позволяющую избежать разделения сцены на две половины.

Слайд 8





 
 
      Изображения невозможных фигур встречаются у ряда живописцев Средних веков. На полотне Питера Брейгеля «Сорока на виселице», созданном в 1568 году, видна виселица невозможной конструкции, которая придает эффект всей картине в целом.
Описание слайда:
    Изображения невозможных фигур встречаются у ряда живописцев Средних веков. На полотне Питера Брейгеля «Сорока на виселице», созданном в 1568 году, видна виселица невозможной конструкции, которая придает эффект всей картине в целом.

Слайд 9






     В начале XX века художник Марсель Дюшамп нарисовал рекламную картину «Apolinere enameled» (1916-1917), хранящуюся в Филадельфийском музее искусства. В конструкции кровати на полотне можно разглядеть невозможные трех- и четырехугольники
Описание слайда:
В начале XX века художник Марсель Дюшамп нарисовал рекламную картину «Apolinere enameled» (1916-1917), хранящуюся в Филадельфийском музее искусства. В конструкции кровати на полотне можно разглядеть невозможные трех- и четырехугольники

Слайд 10





      Первым построившим и проанализировавшим невозможные объекты по праву считается шведский художник Оскар Рейтерсвэрд (Oscar Reutersvard), нарисовавший в 1934 г. первый невозможный треугольник, состоявший из девяти кубиков. Затем он усовершенствовал свою модель и получил фигуру, состоящую из двенадцати кубиков. Все кубики реальные, но их расположение в трехмерном пространстве невозможно.
      Первым построившим и проанализировавшим невозможные объекты по праву считается шведский художник Оскар Рейтерсвэрд (Oscar Reutersvard), нарисовавший в 1934 г. первый невозможный треугольник, состоявший из девяти кубиков. Затем он усовершенствовал свою модель и получил фигуру, состоящую из двенадцати кубиков. Все кубики реальные, но их расположение в трехмерном пространстве невозможно.
Описание слайда:
Первым построившим и проанализировавшим невозможные объекты по праву считается шведский художник Оскар Рейтерсвэрд (Oscar Reutersvard), нарисовавший в 1934 г. первый невозможный треугольник, состоявший из девяти кубиков. Затем он усовершенствовал свою модель и получил фигуру, состоящую из двенадцати кубиков. Все кубики реальные, но их расположение в трехмерном пространстве невозможно. Первым построившим и проанализировавшим невозможные объекты по праву считается шведский художник Оскар Рейтерсвэрд (Oscar Reutersvard), нарисовавший в 1934 г. первый невозможный треугольник, состоявший из девяти кубиков. Затем он усовершенствовал свою модель и получил фигуру, состоящую из двенадцати кубиков. Все кубики реальные, но их расположение в трехмерном пространстве невозможно.

Слайд 11





      Этот же художник создал и прототип «невозможной лестницы» (1950). Перед нами предстает лестница, ведущая, казалось бы, вверх или вниз, но при этом человек, шагающий по ней, не поднимается и не опускается. Завершив свой визуальный маршрут, он окажется в начале пути. Если бы вам в самом деле пришлось пройти по этой лестнице, вы бы бесцельно поднимались и спускались по ней бесконечное число раз. Можно назвать это нескончаемым сизифовым трудом! С тех пор как Пенроузы опубликовали эту фигуру, она появлялась в печати чаще, чем какой-либо другой невозможный объект. "Бесконечную лестницу" можно встретить в книгах об играх, головоломках, иллюзиях, в учебниках по психологии и другим предметам.
      Этот же художник создал и прототип «невозможной лестницы» (1950). Перед нами предстает лестница, ведущая, казалось бы, вверх или вниз, но при этом человек, шагающий по ней, не поднимается и не опускается. Завершив свой визуальный маршрут, он окажется в начале пути. Если бы вам в самом деле пришлось пройти по этой лестнице, вы бы бесцельно поднимались и спускались по ней бесконечное число раз. Можно назвать это нескончаемым сизифовым трудом! С тех пор как Пенроузы опубликовали эту фигуру, она появлялась в печати чаще, чем какой-либо другой невозможный объект. "Бесконечную лестницу" можно встретить в книгах об играх, головоломках, иллюзиях, в учебниках по психологии и другим предметам.
Описание слайда:
Этот же художник создал и прототип «невозможной лестницы» (1950). Перед нами предстает лестница, ведущая, казалось бы, вверх или вниз, но при этом человек, шагающий по ней, не поднимается и не опускается. Завершив свой визуальный маршрут, он окажется в начале пути. Если бы вам в самом деле пришлось пройти по этой лестнице, вы бы бесцельно поднимались и спускались по ней бесконечное число раз. Можно назвать это нескончаемым сизифовым трудом! С тех пор как Пенроузы опубликовали эту фигуру, она появлялась в печати чаще, чем какой-либо другой невозможный объект. "Бесконечную лестницу" можно встретить в книгах об играх, головоломках, иллюзиях, в учебниках по психологии и другим предметам. Этот же художник создал и прототип «невозможной лестницы» (1950). Перед нами предстает лестница, ведущая, казалось бы, вверх или вниз, но при этом человек, шагающий по ней, не поднимается и не опускается. Завершив свой визуальный маршрут, он окажется в начале пути. Если бы вам в самом деле пришлось пройти по этой лестнице, вы бы бесцельно поднимались и спускались по ней бесконечное число раз. Можно назвать это нескончаемым сизифовым трудом! С тех пор как Пенроузы опубликовали эту фигуру, она появлялась в печати чаще, чем какой-либо другой невозможный объект. "Бесконечную лестницу" можно встретить в книгах об играх, головоломках, иллюзиях, в учебниках по психологии и другим предметам.

Слайд 12





      "Бесконечной лестницей" с успехом воспользовался художник Мауриц К. Эшер, на этот раз в своей чарующей литографии "Восхождение и нисхождение", созданной в 1960 году. В этом рисунке, отражающем все возможности фигуры Пенроуза, вполне узнаваемая "Бесконечная лестница" аккуратно вписана в крышу монастыря. Монахи в капюшонах непрерывно движутся по лестнице в направлении по часовой стрелке и против нее. Они идут навстречу друг другу по невозможному пути. Им так и не удается ни подняться наверх, ни спуститься вниз. Соответственно, "Бесконечная лестница" стала чаще ассоциироваться с Эшером, перерисовавшим ее, чем с Пенроузами, которые ее придумали.На полотне изображены два ряда человечков: при движении по часовой стрелке человечки постоянно поднимаются, а при движении против часовой стрелки спускаются.
      "Бесконечной лестницей" с успехом воспользовался художник Мауриц К. Эшер, на этот раз в своей чарующей литографии "Восхождение и нисхождение", созданной в 1960 году. В этом рисунке, отражающем все возможности фигуры Пенроуза, вполне узнаваемая "Бесконечная лестница" аккуратно вписана в крышу монастыря. Монахи в капюшонах непрерывно движутся по лестнице в направлении по часовой стрелке и против нее. Они идут навстречу друг другу по невозможному пути. Им так и не удается ни подняться наверх, ни спуститься вниз. Соответственно, "Бесконечная лестница" стала чаще ассоциироваться с Эшером, перерисовавшим ее, чем с Пенроузами, которые ее придумали.На полотне изображены два ряда человечков: при движении по часовой стрелке человечки постоянно поднимаются, а при движении против часовой стрелки спускаются.
Описание слайда:
"Бесконечной лестницей" с успехом воспользовался художник Мауриц К. Эшер, на этот раз в своей чарующей литографии "Восхождение и нисхождение", созданной в 1960 году. В этом рисунке, отражающем все возможности фигуры Пенроуза, вполне узнаваемая "Бесконечная лестница" аккуратно вписана в крышу монастыря. Монахи в капюшонах непрерывно движутся по лестнице в направлении по часовой стрелке и против нее. Они идут навстречу друг другу по невозможному пути. Им так и не удается ни подняться наверх, ни спуститься вниз. Соответственно, "Бесконечная лестница" стала чаще ассоциироваться с Эшером, перерисовавшим ее, чем с Пенроузами, которые ее придумали.На полотне изображены два ряда человечков: при движении по часовой стрелке человечки постоянно поднимаются, а при движении против часовой стрелки спускаются. "Бесконечной лестницей" с успехом воспользовался художник Мауриц К. Эшер, на этот раз в своей чарующей литографии "Восхождение и нисхождение", созданной в 1960 году. В этом рисунке, отражающем все возможности фигуры Пенроуза, вполне узнаваемая "Бесконечная лестница" аккуратно вписана в крышу монастыря. Монахи в капюшонах непрерывно движутся по лестнице в направлении по часовой стрелке и против нее. Они идут навстречу друг другу по невозможному пути. Им так и не удается ни подняться наверх, ни спуститься вниз. Соответственно, "Бесконечная лестница" стала чаще ассоциироваться с Эшером, перерисовавшим ее, чем с Пенроузами, которые ее придумали.На полотне изображены два ряда человечков: при движении по часовой стрелке человечки постоянно поднимаются, а при движении против часовой стрелки спускаются.

Слайд 13





      В 1961 году М. К. Эшер (M. C. Escher) под впечатлением невозможного трегольника, нарисованного Пенроузом (Пенроузы отослали копию статьи Эшеру) создал знаменитую литографию "Водопад" ("Waterfall"). 
      В 1961 году М. К. Эшер (M. C. Escher) под впечатлением невозможного трегольника, нарисованного Пенроузом (Пенроузы отослали копию статьи Эшеру) создал знаменитую литографию "Водопад" ("Waterfall").
Описание слайда:
В 1961 году М. К. Эшер (M. C. Escher) под впечатлением невозможного трегольника, нарисованного Пенроузом (Пенроузы отослали копию статьи Эшеру) создал знаменитую литографию "Водопад" ("Waterfall"). В 1961 году М. К. Эшер (M. C. Escher) под впечатлением невозможного трегольника, нарисованного Пенроузом (Пенроузы отослали копию статьи Эшеру) создал знаменитую литографию "Водопад" ("Waterfall").

Слайд 14





  Среди всех невозможных фигур особое место занимает невозможный трезубец («чертова вилка»).
  Среди всех невозможных фигур особое место занимает невозможный трезубец («чертова вилка»).
   Если закрыть рукой верхнюю часть трезубца, то мы увидим вполне реальную картину - три круглых зуба. Если закрыть нижнюю часть трезубца, то мы тоже увидим реальную картину - два прямоугольных зубца. Но, если рассматривать всю фигуру целиком, то получается что три круглых зубца постепенно превращаются в два прямоугольных. 
  Таким образом, можно увидеть, что передний и задний планы данного рисунка конфликтуют. То есть, то что было изначально на переднем плане уходит назад, а задний план (средний зуб) вылезает вперед. Кроме смены переднего и заднего планов в данном рисунке присутствует еще один эффект  – плоские грани верхней части трезубца становятся круглыми в нижней.
Описание слайда:
Среди всех невозможных фигур особое место занимает невозможный трезубец («чертова вилка»). Среди всех невозможных фигур особое место занимает невозможный трезубец («чертова вилка»). Если закрыть рукой верхнюю часть трезубца, то мы увидим вполне реальную картину - три круглых зуба. Если закрыть нижнюю часть трезубца, то мы тоже увидим реальную картину - два прямоугольных зубца. Но, если рассматривать всю фигуру целиком, то получается что три круглых зубца постепенно превращаются в два прямоугольных. Таким образом, можно увидеть, что передний и задний планы данного рисунка конфликтуют. То есть, то что было изначально на переднем плане уходит назад, а задний план (средний зуб) вылезает вперед. Кроме смены переднего и заднего планов в данном рисунке присутствует еще один эффект  – плоские грани верхней части трезубца становятся круглыми в нижней.

Слайд 15





    	Эффект невозможности достигается за счет того, что наш мозг анализирует контур фигуры и пытается подсчитать количество зубцов. Мозг сравнивает количество зубцов фигуры в верхней и нижней части рисунка, из-за возникает ощущение невозможности фигуры. Если количество зубцов у фигуры было значительно больше (например, 7 или 8), то это парадокс был бы менее ярко выражен.
    	Эффект невозможности достигается за счет того, что наш мозг анализирует контур фигуры и пытается подсчитать количество зубцов. Мозг сравнивает количество зубцов фигуры в верхней и нижней части рисунка, из-за возникает ощущение невозможности фигуры. Если количество зубцов у фигуры было значительно больше (например, 7 или 8), то это парадокс был бы менее ярко выражен.
		 Некоторые книги утверждают, что невозможный трезубец принадлежит к классу невозможных фигур, которые не могут быть воссозданы в реальном мире. На самом деле это не так. ВСЕ  невозможные фигуры можно увидеть в реальном мире, но невозможными они будут выглядеть только с одной единственной точки зрения.
  		 Никто не знает, кто первым придумал эту фигуру, потому что она появилась практически одновременно в различных изданиях в середине 60-х годов прошлого века. Наиболее известная иллюстрация была напечатана на обложке журнала "MAD" в марте 1965 года.
Описание слайда:
Эффект невозможности достигается за счет того, что наш мозг анализирует контур фигуры и пытается подсчитать количество зубцов. Мозг сравнивает количество зубцов фигуры в верхней и нижней части рисунка, из-за возникает ощущение невозможности фигуры. Если количество зубцов у фигуры было значительно больше (например, 7 или 8), то это парадокс был бы менее ярко выражен. Эффект невозможности достигается за счет того, что наш мозг анализирует контур фигуры и пытается подсчитать количество зубцов. Мозг сравнивает количество зубцов фигуры в верхней и нижней части рисунка, из-за возникает ощущение невозможности фигуры. Если количество зубцов у фигуры было значительно больше (например, 7 или 8), то это парадокс был бы менее ярко выражен. Некоторые книги утверждают, что невозможный трезубец принадлежит к классу невозможных фигур, которые не могут быть воссозданы в реальном мире. На самом деле это не так. ВСЕ  невозможные фигуры можно увидеть в реальном мире, но невозможными они будут выглядеть только с одной единственной точки зрения. Никто не знает, кто первым придумал эту фигуру, потому что она появилась практически одновременно в различных изданиях в середине 60-х годов прошлого века. Наиболее известная иллюстрация была напечатана на обложке журнала "MAD" в марте 1965 года.

Слайд 16





		Многие художники использовали невозможный трезубец в своем творчестве. Японский художник Шигео Фукуда (Shigeo Fukuda) в 1985 нарисовал невозможную колоннаду. 
		Многие художники использовали невозможный трезубец в своем творчестве. Японский художник Шигео Фукуда (Shigeo Fukuda) в 1985 нарисовал невозможную колоннаду.
Описание слайда:
Многие художники использовали невозможный трезубец в своем творчестве. Японский художник Шигео Фукуда (Shigeo Fukuda) в 1985 нарисовал невозможную колоннаду. Многие художники использовали невозможный трезубец в своем творчестве. Японский художник Шигео Фукуда (Shigeo Fukuda) в 1985 нарисовал невозможную колоннаду.

Слайд 17





		Психолог из Стенфорда Роджер Шепард (Roger Shepard) использовал идею трезубца для своей картины невозможного слона.
		Психолог из Стенфорда Роджер Шепард (Roger Shepard) использовал идею трезубца для своей картины невозможного слона.
Описание слайда:
Психолог из Стенфорда Роджер Шепард (Roger Shepard) использовал идею трезубца для своей картины невозможного слона. Психолог из Стенфорда Роджер Шепард (Roger Shepard) использовал идею трезубца для своей картины невозможного слона.

Слайд 18





У невозможного трезубца много названий:
У невозможного трезубца много названий:
"Poiuyt" (посмотрите на клавиатуру, чтобы понять название) 
"The Devils Fork,"
"Three Stick Clevis,"
"Widgit,"
"Blivit,"
"Impossible Columnade,"
"Trichotometric Indicator Support,"
"Triple Encabulator Tuned Manifold."
 
Описание слайда:
У невозможного трезубца много названий: У невозможного трезубца много названий: "Poiuyt" (посмотрите на клавиатуру, чтобы понять название) "The Devils Fork," "Three Stick Clevis," "Widgit," "Blivit," "Impossible Columnade," "Trichotometric Indicator Support," "Triple Encabulator Tuned Manifold."  

Слайд 19





Невозможные фигуры в реальном мире
Описание слайда:
Невозможные фигуры в реальном мире

Слайд 20





О пользе имп-арта
Описание слайда:
О пользе имп-арта

Слайд 21





Оптические обманы в геометрии
Описание слайда:
Оптические обманы в геометрии

Слайд 22





    Самая простая фигура из Тьерри - подобных - это, по-видимому, иллюзия "пирамида-проем", представляющая собой правильный ромб с линией посередине. Нельзя сказать точно, что мы видим - пирамиду, возвышающуюся над поверхностью, или проем (впадину) на ней.
    Самая простая фигура из Тьерри - подобных - это, по-видимому, иллюзия "пирамида-проем", представляющая собой правильный ромб с линией посередине. Нельзя сказать точно, что мы видим - пирамиду, возвышающуюся над поверхностью, или проем (впадину) на ней.
Описание слайда:
Самая простая фигура из Тьерри - подобных - это, по-видимому, иллюзия "пирамида-проем", представляющая собой правильный ромб с линией посередине. Нельзя сказать точно, что мы видим - пирамиду, возвышающуюся над поверхностью, или проем (впадину) на ней. Самая простая фигура из Тьерри - подобных - это, по-видимому, иллюзия "пирамида-проем", представляющая собой правильный ромб с линией посередине. Нельзя сказать точно, что мы видим - пирамиду, возвышающуюся над поверхностью, или проем (впадину) на ней.

Слайд 23





Этот эффект использован в графике "Лабиринт (План пирамиды)" 2003 года. Картина получила диплом на международной математической конференции и выставке в Будапеште в 2003 году "Ars(Dis)Symmetrica'03". В работе использованы сочетания иллюзии восприятия глубины и невозможных фигур.
Этот эффект использован в графике "Лабиринт (План пирамиды)" 2003 года. Картина получила диплом на международной математической конференции и выставке в Будапеште в 2003 году "Ars(Dis)Symmetrica'03". В работе использованы сочетания иллюзии восприятия глубины и невозможных фигур.
Описание слайда:
Этот эффект использован в графике "Лабиринт (План пирамиды)" 2003 года. Картина получила диплом на международной математической конференции и выставке в Будапеште в 2003 году "Ars(Dis)Symmetrica'03". В работе использованы сочетания иллюзии восприятия глубины и невозможных фигур. Этот эффект использован в графике "Лабиринт (План пирамиды)" 2003 года. Картина получила диплом на международной математической конференции и выставке в Будапеште в 2003 году "Ars(Dis)Symmetrica'03". В работе использованы сочетания иллюзии восприятия глубины и невозможных фигур.

Слайд 24





Задание для исследовательской работы
Описание слайда:
Задание для исследовательской работы

Слайд 25





2. Влад Алексеев создал две интересные программы для построения невозможных объектов — Impossible Puzzle и Impossible Constructor .

     Программа предназначена для создания изображений невозможных фигур из элементарных треугольников путем складывания мозаики. Комбинируя треугольники, можно получить большое количество невозможных фигур. Программа имеет простой и понятный интерфейс.
Описание слайда:
2. Влад Алексеев создал две интересные программы для построения невозможных объектов — Impossible Puzzle и Impossible Constructor . Программа предназначена для создания изображений невозможных фигур из элементарных треугольников путем складывания мозаики. Комбинируя треугольники, можно получить большое количество невозможных фигур. Программа имеет простой и понятный интерфейс.

Слайд 26





     Программа предназначена для конструирования изображений невозможных фигур из кубиков. В основе ее лежит та же идея, что и у программы Illusionarium Катерины Палмер, но в отличие от последней Impossible Constructor предоставляет полный набор из 64 кубиков, а также имеет более удачный интерфейс.
     Программа предназначена для конструирования изображений невозможных фигур из кубиков. В основе ее лежит та же идея, что и у программы Illusionarium Катерины Палмер, но в отличие от последней Impossible Constructor предоставляет полный набор из 64 кубиков, а также имеет более удачный интерфейс.
Описание слайда:
Программа предназначена для конструирования изображений невозможных фигур из кубиков. В основе ее лежит та же идея, что и у программы Illusionarium Катерины Палмер, но в отличие от последней Impossible Constructor предоставляет полный набор из 64 кубиков, а также имеет более удачный интерфейс. Программа предназначена для конструирования изображений невозможных фигур из кубиков. В основе ее лежит та же идея, что и у программы Illusionarium Катерины Палмер, но в отличие от последней Impossible Constructor предоставляет полный набор из 64 кубиков, а также имеет более удачный интерфейс.

Слайд 27





Невозможные фигуры из бумаги и дерева
Описание слайда:
Невозможные фигуры из бумаги и дерева

Слайд 28


Мир невозможных фигур, слайд №28
Описание слайда:

Слайд 29





Заключение
Описание слайда:
Заключение

Слайд 30





Литература
Журнал «Наука и жизнь» 2005, №9
Н. Лэнгдон, Ч. Снейт «С математикой в путь» М: «Педагогика», 1987
festival@1september.ru
http://www.geocities.jp/ikemath/3Drireki.htm
http://www.impworld.narod.ru/.
http://www.simplex.t.u-tokyo.ac.jp/~sugihara/hobby/hobbye.html
http://www.rakov.de/.
Описание слайда:
Литература Журнал «Наука и жизнь» 2005, №9 Н. Лэнгдон, Ч. Снейт «С математикой в путь» М: «Педагогика», 1987 festival@1september.ru http://www.geocities.jp/ikemath/3Drireki.htm http://www.impworld.narod.ru/. http://www.simplex.t.u-tokyo.ac.jp/~sugihara/hobby/hobbye.html http://www.rakov.de/.



Похожие презентации
Mypresentation.ru
Загрузить презентацию