🗊Презентация 8870f06ee3af4744996dfb53a09009b3

Категория: Образование
Нажмите для полного просмотра!
8870f06ee3af4744996dfb53a09009b3, слайд №18870f06ee3af4744996dfb53a09009b3, слайд №28870f06ee3af4744996dfb53a09009b3, слайд №38870f06ee3af4744996dfb53a09009b3, слайд №48870f06ee3af4744996dfb53a09009b3, слайд №58870f06ee3af4744996dfb53a09009b3, слайд №68870f06ee3af4744996dfb53a09009b3, слайд №78870f06ee3af4744996dfb53a09009b3, слайд №88870f06ee3af4744996dfb53a09009b3, слайд №98870f06ee3af4744996dfb53a09009b3, слайд №108870f06ee3af4744996dfb53a09009b3, слайд №118870f06ee3af4744996dfb53a09009b3, слайд №128870f06ee3af4744996dfb53a09009b3, слайд №138870f06ee3af4744996dfb53a09009b3, слайд №148870f06ee3af4744996dfb53a09009b3, слайд №158870f06ee3af4744996dfb53a09009b3, слайд №168870f06ee3af4744996dfb53a09009b3, слайд №178870f06ee3af4744996dfb53a09009b3, слайд №188870f06ee3af4744996dfb53a09009b3, слайд №198870f06ee3af4744996dfb53a09009b3, слайд №208870f06ee3af4744996dfb53a09009b3, слайд №21

Содержание

Вы можете ознакомиться и скачать презентацию на тему 8870f06ee3af4744996dfb53a09009b3. Доклад-сообщение содержит 21 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Электрический ток в металлах
Описание слайда:
Электрический ток в металлах

Слайд 2





	Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля. Опыты показывают, что при протекании тока по металлическому проводнику не происходит переноса вещества, следовательно, ионы металла не принимают участия в переносе электрического заряда.
	Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля. Опыты показывают, что при протекании тока по металлическому проводнику не происходит переноса вещества, следовательно, ионы металла не принимают участия в переносе электрического заряда.
Описание слайда:
Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля. Опыты показывают, что при протекании тока по металлическому проводнику не происходит переноса вещества, следовательно, ионы металла не принимают участия в переносе электрического заряда. Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля. Опыты показывают, что при протекании тока по металлическому проводнику не происходит переноса вещества, следовательно, ионы металла не принимают участия в переносе электрического заряда.

Слайд 3





Опыт Э.Рикке
	В этих опытах электрический ток пропускали в течении года через три прижатых друг к другу, хорошо отшлифованных цилиндра - медный, алюминиевый и снова медный. Общий заряд, прошедший за это время через цилиндры, был очень велик (около 3,5*106 Кл). После окончания было установлено, что имеются лишь незначительные следы взаимного проникновения металлов, которые не превышают результатов обычной диффузии атомов в твёрдых телах. Измерения, проведённые с высокой степенью точности, показали, что масса каждого из цилиндров осталась неизменной. Поскольку массы атомов меди и алюминия существенно отличаются друг от друга, то масса цилиндров должна была бы заметно измениться, если бы носителями заряда были ионы.
Описание слайда:
Опыт Э.Рикке В этих опытах электрический ток пропускали в течении года через три прижатых друг к другу, хорошо отшлифованных цилиндра - медный, алюминиевый и снова медный. Общий заряд, прошедший за это время через цилиндры, был очень велик (около 3,5*106 Кл). После окончания было установлено, что имеются лишь незначительные следы взаимного проникновения металлов, которые не превышают результатов обычной диффузии атомов в твёрдых телах. Измерения, проведённые с высокой степенью точности, показали, что масса каждого из цилиндров осталась неизменной. Поскольку массы атомов меди и алюминия существенно отличаются друг от друга, то масса цилиндров должна была бы заметно измениться, если бы носителями заряда были ионы.

Слайд 4


8870f06ee3af4744996dfb53a09009b3, слайд №4
Описание слайда:

Слайд 5





	Следовательно, свободными носителями заряда в металлах являются не ионы. Огромный заряд, который прошёл через цилиндры, был перенесён, очевидно, такими частицами, которые одинаковы и в меди, и в алюминии. Как известно, такие частицы входят в состав атомов всех веществ - это электроны. Естественно предположить, что ток в металлах осуществляют именно свободные электроны.
	Следовательно, свободными носителями заряда в металлах являются не ионы. Огромный заряд, который прошёл через цилиндры, был перенесён, очевидно, такими частицами, которые одинаковы и в меди, и в алюминии. Как известно, такие частицы входят в состав атомов всех веществ - это электроны. Естественно предположить, что ток в металлах осуществляют именно свободные электроны.
Описание слайда:
Следовательно, свободными носителями заряда в металлах являются не ионы. Огромный заряд, который прошёл через цилиндры, был перенесён, очевидно, такими частицами, которые одинаковы и в меди, и в алюминии. Как известно, такие частицы входят в состав атомов всех веществ - это электроны. Естественно предположить, что ток в металлах осуществляют именно свободные электроны. Следовательно, свободными носителями заряда в металлах являются не ионы. Огромный заряд, который прошёл через цилиндры, был перенесён, очевидно, такими частицами, которые одинаковы и в меди, и в алюминии. Как известно, такие частицы входят в состав атомов всех веществ - это электроны. Естественно предположить, что ток в металлах осуществляют именно свободные электроны.

Слайд 6





Опыт Т.Стюарта и Р.Толмена
Катушка с большим числом витков тонкой проволоки приводилась в быстрое вращение вокруг своей оси. Концы катушки с помощью гибких проводов были присоединены к чувствительному баллистическому гальванометру . Раскрученная катушка резко тормозилась, и в цепи возникал кратковременных ток, обусловленный инерцией носителей заряда. Полный заряд, протекающий по цепи, измерялся по отбросу стрелки гальванометра.
Описание слайда:
Опыт Т.Стюарта и Р.Толмена Катушка с большим числом витков тонкой проволоки приводилась в быстрое вращение вокруг своей оси. Концы катушки с помощью гибких проводов были присоединены к чувствительному баллистическому гальванометру . Раскрученная катушка резко тормозилась, и в цепи возникал кратковременных ток, обусловленный инерцией носителей заряда. Полный заряд, протекающий по цепи, измерялся по отбросу стрелки гальванометра.

Слайд 7





Р. Толмен
Р. Толмен
Описание слайда:
Р. Толмен Р. Толмен

Слайд 8





	Т.Стюарт и Р.Толмен определили экспериментально удельный заряд частиц. Он оказался равным 
	Т.Стюарт и Р.Толмен определили экспериментально удельный заряд частиц. Он оказался равным
Описание слайда:
Т.Стюарт и Р.Толмен определили экспериментально удельный заряд частиц. Он оказался равным Т.Стюарт и Р.Толмен определили экспериментально удельный заряд частиц. Он оказался равным

Слайд 9





	В начале 20 века немецкий физик П. Друде и голландский физик Х.Лоренц создали классическую теорию  электропроводности металлов.
	В начале 20 века немецкий физик П. Друде и голландский физик Х.Лоренц создали классическую теорию  электропроводности металлов.
Описание слайда:
В начале 20 века немецкий физик П. Друде и голландский физик Х.Лоренц создали классическую теорию электропроводности металлов. В начале 20 века немецкий физик П. Друде и голландский физик Х.Лоренц создали классическую теорию электропроводности металлов.

Слайд 10





Основные положения теории
Хорошая проводимость металлов объясняется наличием в них большого числа электронов.
Под действием внешнего электрического поля на беспорядочное движение электронов накладывается упорядоченное движение, т.е. возникает ток.
Описание слайда:
Основные положения теории Хорошая проводимость металлов объясняется наличием в них большого числа электронов. Под действием внешнего электрического поля на беспорядочное движение электронов накладывается упорядоченное движение, т.е. возникает ток.

Слайд 11





3. Сила электрического, тока идущего по металлическому проводнику равна: 
3. Сила электрического, тока идущего по металлическому проводнику равна:
Описание слайда:
3. Сила электрического, тока идущего по металлическому проводнику равна: 3. Сила электрического, тока идущего по металлическому проводнику равна:

Слайд 12





4. Так как внутреннее строение у разных веществ различное, то и сопротивление тоже будет различным.
4. Так как внутреннее строение у разных веществ различное, то и сопротивление тоже будет различным.
5. При увеличении хаотического движения частиц вещества происходит нагревание тела, т.е. выделение тепла. Закон Джоуля-Ленца:
Описание слайда:
4. Так как внутреннее строение у разных веществ различное, то и сопротивление тоже будет различным. 4. Так как внутреннее строение у разных веществ различное, то и сопротивление тоже будет различным. 5. При увеличении хаотического движения частиц вещества происходит нагревание тела, т.е. выделение тепла. Закон Джоуля-Ленца:

Слайд 13





6. У всех металлов с увеличением температуры растет и сопротивление.
6. У всех металлов с увеличением температуры растет и сопротивление.

R=R0(1+at)

где a - температурный коэффициент; R0   – удельное сопротивление и сопротивление металлического проводника; и R – удельное сопротивление проводника и сопротивление проводника при температуре t.
Описание слайда:
6. У всех металлов с увеличением температуры растет и сопротивление. 6. У всех металлов с увеличением температуры растет и сопротивление. R=R0(1+at) где a - температурный коэффициент; R0 – удельное сопротивление и сопротивление металлического проводника; и R – удельное сопротивление проводника и сопротивление проводника при температуре t.

Слайд 14





Сверхпроводимость
	Cвойство некоторых материалов обладать строго нулевым электрическим сопротивлением ниже определённой температуры. Существует множество чистых элементов, сплавов и керамик, переходящих в сверхпроводящее состояние.
Описание слайда:
Сверхпроводимость Cвойство некоторых материалов обладать строго нулевым электрическим сопротивлением ниже определённой температуры. Существует множество чистых элементов, сплавов и керамик, переходящих в сверхпроводящее состояние.

Слайд 15





	В 1911 году голландский физик Камерлинг-Оннес обнаружил, что при охлаждении ртути в жидком гелии её сопротивление сначала меняется постепенно, а затем при температуре 4,2 К резко падает до нуля. Однако нулевое сопротивление — не единственная отличительная черта сверхпроводимости. Ещё из теории Друде известно, что проводимость металлов увеличивается с понижением температуры, то есть электрическое сопротивление стремится к нулю. 
	В 1911 году голландский физик Камерлинг-Оннес обнаружил, что при охлаждении ртути в жидком гелии её сопротивление сначала меняется постепенно, а затем при температуре 4,2 К резко падает до нуля. Однако нулевое сопротивление — не единственная отличительная черта сверхпроводимости. Ещё из теории Друде известно, что проводимость металлов увеличивается с понижением температуры, то есть электрическое сопротивление стремится к нулю.
Описание слайда:
В 1911 году голландский физик Камерлинг-Оннес обнаружил, что при охлаждении ртути в жидком гелии её сопротивление сначала меняется постепенно, а затем при температуре 4,2 К резко падает до нуля. Однако нулевое сопротивление — не единственная отличительная черта сверхпроводимости. Ещё из теории Друде известно, что проводимость металлов увеличивается с понижением температуры, то есть электрическое сопротивление стремится к нулю. В 1911 году голландский физик Камерлинг-Оннес обнаружил, что при охлаждении ртути в жидком гелии её сопротивление сначала меняется постепенно, а затем при температуре 4,2 К резко падает до нуля. Однако нулевое сопротивление — не единственная отличительная черта сверхпроводимости. Ещё из теории Друде известно, что проводимость металлов увеличивается с понижением температуры, то есть электрическое сопротивление стремится к нулю.

Слайд 16





Х. Камерлинг-Оннес
Х. Камерлинг-Оннес
Описание слайда:
Х. Камерлинг-Оннес Х. Камерлинг-Оннес

Слайд 17





Одним из главных отличий сверхпроводников от идеальных проводников является эффект Мейснера, открытый в 1933 году. Таким образом, открытие сверхпроводимости растянулось на двадцать с лишним лет.
Одним из главных отличий сверхпроводников от идеальных проводников является эффект Мейснера, открытый в 1933 году. Таким образом, открытие сверхпроводимости растянулось на двадцать с лишним лет.
Описание слайда:
Одним из главных отличий сверхпроводников от идеальных проводников является эффект Мейснера, открытый в 1933 году. Таким образом, открытие сверхпроводимости растянулось на двадцать с лишним лет. Одним из главных отличий сверхпроводников от идеальных проводников является эффект Мейснера, открытый в 1933 году. Таким образом, открытие сверхпроводимости растянулось на двадцать с лишним лет.

Слайд 18





В. Мейснер
В. Мейснер
Описание слайда:
В. Мейснер В. Мейснер

Слайд 19





	Теория сверхпроводимости была создана лишь в 1957 году американцами Л. Купером, Дж. Бардином и Дж. Шриффером. Они считали, что сверх проводимость – это сверхтекучесть электронной жидкости.
	Теория сверхпроводимости была создана лишь в 1957 году американцами Л. Купером, Дж. Бардином и Дж. Шриффером. Они считали, что сверх проводимость – это сверхтекучесть электронной жидкости.
Описание слайда:
Теория сверхпроводимости была создана лишь в 1957 году американцами Л. Купером, Дж. Бардином и Дж. Шриффером. Они считали, что сверх проводимость – это сверхтекучесть электронной жидкости. Теория сверхпроводимости была создана лишь в 1957 году американцами Л. Купером, Дж. Бардином и Дж. Шриффером. Они считали, что сверх проводимость – это сверхтекучесть электронной жидкости.

Слайд 20





	Трудность достижения сверхпроводимости:
	Трудность достижения сверхпроводимости:
	необходимость сильного охлаждения вещества
Описание слайда:
Трудность достижения сверхпроводимости: Трудность достижения сверхпроводимости: необходимость сильного охлаждения вещества

Слайд 21





Область применения
	получение сильных магнитных полей;
	мощные электромагниты со сверхпроводящей обмоткой в ускорителях и генераторах.
	В настоящий момент в энергетике существует большая проблема - большие потери электроэнергии при передаче ее по проводам.
	Возможное решение проблемы:
	при сверхпроводимости сопротивление проводников приблизительно равно 0 и потери энергии резко уменьшаются.
Описание слайда:
Область применения получение сильных магнитных полей; мощные электромагниты со сверхпроводящей обмоткой в ускорителях и генераторах. В настоящий момент в энергетике существует большая проблема - большие потери электроэнергии при передаче ее по проводам. Возможное решение проблемы: при сверхпроводимости сопротивление проводников приблизительно равно 0 и потери энергии резко уменьшаются.



Похожие презентации
Mypresentation.ru
Загрузить презентацию