🗊Презентация Optimization of Nonlinear, Coupled Fluid-Thermal Systems

Категория: Образование
Нажмите для полного просмотра!
/ 37

Вы можете ознакомиться и скачать презентацию на тему Optimization of Nonlinear, Coupled Fluid-Thermal Systems . Доклад-сообщение содержит 37 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Optimization of Nonlinear, Coupled Fluid-Thermal Systems 
Carrie Keyworth and Benjamin Kirk
Advisors:  Dr. Graham Carey and Bill Barth
ASE 463Q
May 3, 2000
Описание слайда:
Optimization of Nonlinear, Coupled Fluid-Thermal Systems Carrie Keyworth and Benjamin Kirk Advisors: Dr. Graham Carey and Bill Barth ASE 463Q May 3, 2000

Слайд 2





Presentation Outline
Overview
Project Goals
Microgravity Research
MGFLO
Optimization Theory
Previous Work
Описание слайда:
Presentation Outline Overview Project Goals Microgravity Research MGFLO Optimization Theory Previous Work

Слайд 3





Project Goals	
To Design and Implement an optimization algorithm for a fluid-thermal simulator
MGFLO
Boundary Condition Manipulation
Описание слайда:
Project Goals To Design and Implement an optimization algorithm for a fluid-thermal simulator MGFLO Boundary Condition Manipulation

Слайд 4





Microgravity Fluid Research
Surface Tension
Smallest Surface Area Possible
Dominated on Earth by Gravity, which Makes Surfaces Flat
Описание слайда:
Microgravity Fluid Research Surface Tension Smallest Surface Area Possible Dominated on Earth by Gravity, which Makes Surfaces Flat

Слайд 5


Optimization of Nonlinear, Coupled Fluid-Thermal Systems , слайд №5
Описание слайда:

Слайд 6





Microgravity Test Facilities
Drop Towers
Evacuated tubes used to expose experiments to several seconds of microgravity
Only short durations of microgravity are achieved
Описание слайда:
Microgravity Test Facilities Drop Towers Evacuated tubes used to expose experiments to several seconds of microgravity Only short durations of microgravity are achieved

Слайд 7





Test Facilities
NASA’s KC-135 “Vomit Comet”
Parabolic flight pattern can produce up to 30 seconds of microgravity
Several periods of microgravity in one flight
Описание слайда:
Test Facilities NASA’s KC-135 “Vomit Comet” Parabolic flight pattern can produce up to 30 seconds of microgravity Several periods of microgravity in one flight

Слайд 8





Test Facilities
Sounding Rockets
Also flown in a parabolic flight path to produce microgravity
Can provide 6-7 minutes of microgravity
Описание слайда:
Test Facilities Sounding Rockets Also flown in a parabolic flight path to produce microgravity Can provide 6-7 minutes of microgravity

Слайд 9





Microgravity Simulation
Computational Fluid Dynamics (CFD) allows cost-effective microgravity simulation
Advances in parallel supercomputing allow large problems to be solved
Описание слайда:
Microgravity Simulation Computational Fluid Dynamics (CFD) allows cost-effective microgravity simulation Advances in parallel supercomputing allow large problems to be solved

Слайд 10





Governing Equations
Incompressible Navier-Stokes Equations:
Energy Equation:
Описание слайда:
Governing Equations Incompressible Navier-Stokes Equations: Energy Equation:

Слайд 11





MGFLO
Developed Under NASA-Grand Challenge Support
Parallel, Finite Element Formulation of Navier-Stokes and Energy Equations
Allows for Coupled and Uncoupled Solution
Systems Optimized Through Matlab Using Existing Algorithms
Описание слайда:
MGFLO Developed Under NASA-Grand Challenge Support Parallel, Finite Element Formulation of Navier-Stokes and Energy Equations Allows for Coupled and Uncoupled Solution Systems Optimized Through Matlab Using Existing Algorithms

Слайд 12





Optimization Theory
Attempt to find “best value” of a merit function within defined constraints
Gradient versus non-gradient methods
Gradient methods can be complex and require several merit function evaluations
Non-gradient methods optimize based on a sample set of merit function values
Nelder-Mead Simplex Search Algorithm
Описание слайда:
Optimization Theory Attempt to find “best value” of a merit function within defined constraints Gradient versus non-gradient methods Gradient methods can be complex and require several merit function evaluations Non-gradient methods optimize based on a sample set of merit function values Nelder-Mead Simplex Search Algorithm

Слайд 13





Nelder and Mead’s Method
Efficient search method for minimizing a merit function of up to six variables
Optimization points are nodes of a polygon 
Optimal solution is determined by:
Reflection
Expansion
Contraction
Описание слайда:
Nelder and Mead’s Method Efficient search method for minimizing a merit function of up to six variables Optimization points are nodes of a polygon Optimal solution is determined by: Reflection Expansion Contraction

Слайд 14





Simplex Steps
Описание слайда:
Simplex Steps

Слайд 15





Previous Work
Investigated Operation of the MGFLO Code
Designed Simple Optimization Routine in Matlab 
Established Algorithms to Optimize Complex Fluid-Thermal Systems
Описание слайда:
Previous Work Investigated Operation of the MGFLO Code Designed Simple Optimization Routine in Matlab Established Algorithms to Optimize Complex Fluid-Thermal Systems

Слайд 16





Code Overview
Developed Matlab Routines to Analyze MGFLO Output.
Matlab Can Compute Quantities of Interest:
Vorticity, Divergence 
Gradient, Laplacian 
0th, 1st, 2nd Order Derivatives Normal to Walls 
Average Quantities in Large Datasets
Описание слайда:
Code Overview Developed Matlab Routines to Analyze MGFLO Output. Matlab Can Compute Quantities of Interest: Vorticity, Divergence Gradient, Laplacian 0th, 1st, 2nd Order Derivatives Normal to Walls Average Quantities in Large Datasets

Слайд 17





Code Functions
Initializes the solution
Calls MGFLO for each simplex step
Checks that user-specified constraints are satisfied
Calculates the user-specified merit function
Allows user to monitor solution progression
Описание слайда:
Code Functions Initializes the solution Calls MGFLO for each simplex step Checks that user-specified constraints are satisfied Calculates the user-specified merit function Allows user to monitor solution progression

Слайд 18


Optimization of Nonlinear, Coupled Fluid-Thermal Systems , слайд №18
Описание слайда:

Слайд 19





Debugging & Validation
Attempt to find answer to a known problem
Position heat source on top surface to maximize heat flux out of the bottom
Run on the 16-node Beowulf cluster in the CFDLab
Описание слайда:
Debugging & Validation Attempt to find answer to a known problem Position heat source on top surface to maximize heat flux out of the bottom Run on the 16-node Beowulf cluster in the CFDLab

Слайд 20


Optimization of Nonlinear, Coupled Fluid-Thermal Systems , слайд №20
Описание слайда:

Слайд 21


Optimization of Nonlinear, Coupled Fluid-Thermal Systems , слайд №21
Описание слайда:

Слайд 22





Optimization Path
Описание слайда:
Optimization Path

Слайд 23





Limitations
Merit function dependence for pathological problems
Not successful at maximizing vorticity in previous case
Non-smooth merit functions (too many local maxima)
Описание слайда:
Limitations Merit function dependence for pathological problems Not successful at maximizing vorticity in previous case Non-smooth merit functions (too many local maxima)

Слайд 24





Applications
Solve more complicated problem whose answer is not known a-priori
System exposed to external environment via Newton’s law of cooling (mixed boundary condition)
Use particle tracing as a visualization  technique
Описание слайда:
Applications Solve more complicated problem whose answer is not known a-priori System exposed to external environment via Newton’s law of cooling (mixed boundary condition) Use particle tracing as a visualization technique

Слайд 25


Optimization of Nonlinear, Coupled Fluid-Thermal Systems , слайд №25
Описание слайда:

Слайд 26





Case 1:  Tdesired=310K
Описание слайда:
Case 1: Tdesired=310K

Слайд 27





Particle Tracing Algorithm
Heun predictor-corrector method
Second-order accurate in time 
Allows visualization/quantification of mixing
Описание слайда:
Particle Tracing Algorithm Heun predictor-corrector method Second-order accurate in time Allows visualization/quantification of mixing

Слайд 28


Optimization of Nonlinear, Coupled Fluid-Thermal Systems , слайд №28
Описание слайда:

Слайд 29


Optimization of Nonlinear, Coupled Fluid-Thermal Systems , слайд №29
Описание слайда:

Слайд 30





Convergence History
Описание слайда:
Convergence History

Слайд 31





Case 2:  Tdesired=340K
Описание слайда:
Case 2: Tdesired=340K

Слайд 32


Optimization of Nonlinear, Coupled Fluid-Thermal Systems , слайд №32
Описание слайда:

Слайд 33


Optimization of Nonlinear, Coupled Fluid-Thermal Systems , слайд №33
Описание слайда:

Слайд 34





Convergence History
Описание слайда:
Convergence History

Слайд 35





Conclusions
We became familiar with the CFDLab and the MGFLO code
Successfully developed a method to optimize nonlinear fluid-thermal systems
Implemented a particle tracing algorithm in Matlab to visualize fluid mixing
Описание слайда:
Conclusions We became familiar with the CFDLab and the MGFLO code Successfully developed a method to optimize nonlinear fluid-thermal systems Implemented a particle tracing algorithm in Matlab to visualize fluid mixing

Слайд 36





Recommendations
Use particle tracing algorithm to optimize system mixing (currently takes a long time!)
Implement feedback control for time-varying systems
Calculate merit function interior to MGFLO 
Faster
More accurate
Support unstructured grids
Описание слайда:
Recommendations Use particle tracing algorithm to optimize system mixing (currently takes a long time!) Implement feedback control for time-varying systems Calculate merit function interior to MGFLO Faster More accurate Support unstructured grids

Слайд 37





Questions?
Описание слайда:
Questions?



Похожие презентации
Mypresentation.ru
Загрузить презентацию