🗊Александрова С.Ю. учитель физики МОУ СОШ №48

Категория: Физика
Нажмите для полного просмотра!
Александрова С.Ю.  учитель физики  МОУ СОШ №48, слайд №1Александрова С.Ю.  учитель физики  МОУ СОШ №48, слайд №2Александрова С.Ю.  учитель физики  МОУ СОШ №48, слайд №3Александрова С.Ю.  учитель физики  МОУ СОШ №48, слайд №4Александрова С.Ю.  учитель физики  МОУ СОШ №48, слайд №5Александрова С.Ю.  учитель физики  МОУ СОШ №48, слайд №6Александрова С.Ю.  учитель физики  МОУ СОШ №48, слайд №7Александрова С.Ю.  учитель физики  МОУ СОШ №48, слайд №8Александрова С.Ю.  учитель физики  МОУ СОШ №48, слайд №9Александрова С.Ю.  учитель физики  МОУ СОШ №48, слайд №10Александрова С.Ю.  учитель физики  МОУ СОШ №48, слайд №11Александрова С.Ю.  учитель физики  МОУ СОШ №48, слайд №12Александрова С.Ю.  учитель физики  МОУ СОШ №48, слайд №13Александрова С.Ю.  учитель физики  МОУ СОШ №48, слайд №14Александрова С.Ю.  учитель физики  МОУ СОШ №48, слайд №15Александрова С.Ю.  учитель физики  МОУ СОШ №48, слайд №16Александрова С.Ю.  учитель физики  МОУ СОШ №48, слайд №17Александрова С.Ю.  учитель физики  МОУ СОШ №48, слайд №18Александрова С.Ю.  учитель физики  МОУ СОШ №48, слайд №19

Содержание

Вы можете ознакомиться и скачать Александрова С.Ю. учитель физики МОУ СОШ №48. Презентация содержит 19 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1






Александрова С.Ю.
учитель физики
МОУ СОШ №48
Описание слайда:
Александрова С.Ю. учитель физики МОУ СОШ №48

Слайд 2


Александрова С.Ю.  учитель физики  МОУ СОШ №48, слайд №2
Описание слайда:

Слайд 3





«Если бы в результате какой-либо мировой катастрофы все накопленные научные знания оказались уничтоженными и к грядущим поколениям перешла бы только одна фраза, то какое утверждение, составленное из наименьшего количества слов, принесло бы большую информацию?! Я считаю, что это атомная гипотеза… - все тела состоят из атомов - маленьких телец, которые находятся в беспрерывном движении, притягиваются на небольших расстояниях, но отталкиваются, если одно из них приближать к другому».           Р. Фейман 
«Если бы в результате какой-либо мировой катастрофы все накопленные научные знания оказались уничтоженными и к грядущим поколениям перешла бы только одна фраза, то какое утверждение, составленное из наименьшего количества слов, принесло бы большую информацию?! Я считаю, что это атомная гипотеза… - все тела состоят из атомов - маленьких телец, которые находятся в беспрерывном движении, притягиваются на небольших расстояниях, но отталкиваются, если одно из них приближать к другому».           Р. Фейман
Описание слайда:
«Если бы в результате какой-либо мировой катастрофы все накопленные научные знания оказались уничтоженными и к грядущим поколениям перешла бы только одна фраза, то какое утверждение, составленное из наименьшего количества слов, принесло бы большую информацию?! Я считаю, что это атомная гипотеза… - все тела состоят из атомов - маленьких телец, которые находятся в беспрерывном движении, притягиваются на небольших расстояниях, но отталкиваются, если одно из них приближать к другому». Р. Фейман «Если бы в результате какой-либо мировой катастрофы все накопленные научные знания оказались уничтоженными и к грядущим поколениям перешла бы только одна фраза, то какое утверждение, составленное из наименьшего количества слов, принесло бы большую информацию?! Я считаю, что это атомная гипотеза… - все тела состоят из атомов - маленьких телец, которые находятся в беспрерывном движении, притягиваются на небольших расстояниях, но отталкиваются, если одно из них приближать к другому». Р. Фейман

Слайд 4





Первым, кто отчетливо высказал мысль об атомистическом строении вещества, принято считать греческого мыслителя Демокрита, жившего в V в. до н.э. Что же натолкнуло древних ученых на мысль о дискретном строении вещества? Путем размышлений он пришел к выводу, что существует предел деления любого тела и последнюю, далее уже неделимую часть, обладающая свойствами целого, он назвал «атомом». 
Первым, кто отчетливо высказал мысль об атомистическом строении вещества, принято считать греческого мыслителя Демокрита, жившего в V в. до н.э. Что же натолкнуло древних ученых на мысль о дискретном строении вещества? Путем размышлений он пришел к выводу, что существует предел деления любого тела и последнюю, далее уже неделимую часть, обладающая свойствами целого, он назвал «атомом».
Описание слайда:
Первым, кто отчетливо высказал мысль об атомистическом строении вещества, принято считать греческого мыслителя Демокрита, жившего в V в. до н.э. Что же натолкнуло древних ученых на мысль о дискретном строении вещества? Путем размышлений он пришел к выводу, что существует предел деления любого тела и последнюю, далее уже неделимую часть, обладающая свойствами целого, он назвал «атомом». Первым, кто отчетливо высказал мысль об атомистическом строении вещества, принято считать греческого мыслителя Демокрита, жившего в V в. до н.э. Что же натолкнуло древних ученых на мысль о дискретном строении вещества? Путем размышлений он пришел к выводу, что существует предел деления любого тела и последнюю, далее уже неделимую часть, обладающая свойствами целого, он назвал «атомом».

Слайд 5





	 «Начало вселенной - атомы и пустота, все же остальное существует лишь во мнении. Миров бесчисленное множество, и они имеют начало и конец во времени. И ничто не возникает из небытия и не разрешается в небытие. И атомы бесчисленны по величине и по множеству, носятся же они во вселенной, кружась в вихре, и таким образом рождается все сложное: огонь, вода, воздух и земля. Последние суть соединения некоторых атомов»
	 «Начало вселенной - атомы и пустота, все же остальное существует лишь во мнении. Миров бесчисленное множество, и они имеют начало и конец во времени. И ничто не возникает из небытия и не разрешается в небытие. И атомы бесчисленны по величине и по множеству, носятся же они во вселенной, кружась в вихре, и таким образом рождается все сложное: огонь, вода, воздух и земля. Последние суть соединения некоторых атомов»
Описание слайда:
«Начало вселенной - атомы и пустота, все же остальное существует лишь во мнении. Миров бесчисленное множество, и они имеют начало и конец во времени. И ничто не возникает из небытия и не разрешается в небытие. И атомы бесчисленны по величине и по множеству, носятся же они во вселенной, кружась в вихре, и таким образом рождается все сложное: огонь, вода, воздух и земля. Последние суть соединения некоторых атомов» «Начало вселенной - атомы и пустота, все же остальное существует лишь во мнении. Миров бесчисленное множество, и они имеют начало и конец во времени. И ничто не возникает из небытия и не разрешается в небытие. И атомы бесчисленны по величине и по множеству, носятся же они во вселенной, кружась в вихре, и таким образом рождается все сложное: огонь, вода, воздух и земля. Последние суть соединения некоторых атомов»

Слайд 6





Учение Демокрита бросало вызов религиозному взгляду на мир. Для объяснения природы он прибегал не к божественному откровению, а к естественным причинам. Материалистичность атомистики была причиной того, что Платон, от которого берет свое начало идеалистическая линия в философии, приказывал своим ученикам уничтожать сочинения Демокрита.        
Учение Демокрита бросало вызов религиозному взгляду на мир. Для объяснения природы он прибегал не к божественному откровению, а к естественным причинам. Материалистичность атомистики была причиной того, что Платон, от которого берет свое начало идеалистическая линия в философии, приказывал своим ученикам уничтожать сочинения Демокрита.        
В средние века учение Демокрита было запрещено церковью.
Описание слайда:
Учение Демокрита бросало вызов религиозному взгляду на мир. Для объяснения природы он прибегал не к божественному откровению, а к естественным причинам. Материалистичность атомистики была причиной того, что Платон, от которого берет свое начало идеалистическая линия в философии, приказывал своим ученикам уничтожать сочинения Демокрита. Учение Демокрита бросало вызов религиозному взгляду на мир. Для объяснения природы он прибегал не к божественному откровению, а к естественным причинам. Материалистичность атомистики была причиной того, что Платон, от которого берет свое начало идеалистическая линия в философии, приказывал своим ученикам уничтожать сочинения Демокрита. В средние века учение Демокрита было запрещено церковью.

Слайд 7





Лишь в XVII в. французский философ Пьер Гассенди (1592-1665) возродил к жизни идеи древних атомистов. Но для развития этой идеи не хватало новых фактов и строго количественного, экспериментального физического метода. Однако эпоха Возрождения с характерным для нее повышенным интересом к изучению наследия древних мыслителей сделала свое дело - атомистическая идея вошла вновь в обиход науки. Галилей и Ньютон принимают ее как само собой разумеющееся и пользуются ею в своих теоретических построениях (хотя и существенно не развивают её). 
Лишь в XVII в. французский философ Пьер Гассенди (1592-1665) возродил к жизни идеи древних атомистов. Но для развития этой идеи не хватало новых фактов и строго количественного, экспериментального физического метода. Однако эпоха Возрождения с характерным для нее повышенным интересом к изучению наследия древних мыслителей сделала свое дело - атомистическая идея вошла вновь в обиход науки. Галилей и Ньютон принимают ее как само собой разумеющееся и пользуются ею в своих теоретических построениях (хотя и существенно не развивают её).
Описание слайда:
Лишь в XVII в. французский философ Пьер Гассенди (1592-1665) возродил к жизни идеи древних атомистов. Но для развития этой идеи не хватало новых фактов и строго количественного, экспериментального физического метода. Однако эпоха Возрождения с характерным для нее повышенным интересом к изучению наследия древних мыслителей сделала свое дело - атомистическая идея вошла вновь в обиход науки. Галилей и Ньютон принимают ее как само собой разумеющееся и пользуются ею в своих теоретических построениях (хотя и существенно не развивают её). Лишь в XVII в. французский философ Пьер Гассенди (1592-1665) возродил к жизни идеи древних атомистов. Но для развития этой идеи не хватало новых фактов и строго количественного, экспериментального физического метода. Однако эпоха Возрождения с характерным для нее повышенным интересом к изучению наследия древних мыслителей сделала свое дело - атомистическая идея вошла вновь в обиход науки. Галилей и Ньютон принимают ее как само собой разумеющееся и пользуются ею в своих теоретических построениях (хотя и существенно не развивают её).

Слайд 8





И.Ньютон
И.Ньютон
 Атомы обладают инертностью и тяготением, и в самом определении массы тела Ньютон выступает как атомист, считая ее пропорциональной числу однокачественных частиц. Да и свет, по Ньютону, имеет корпускулярную структуру.
Описание слайда:
И.Ньютон И.Ньютон Атомы обладают инертностью и тяготением, и в самом определении массы тела Ньютон выступает как атомист, считая ее пропорциональной числу однокачественных частиц. Да и свет, по Ньютону, имеет корпускулярную структуру.

Слайд 9





Декарт и его последователи картезианцы атом рассматривали как частицу, образованную из материи, которая делится до бесконечности. Атомы, по Декарту, из которых составлено вещество, могли изменяться по форме и по величине. Однако эта гипотеза сравнительно быстро сошла со сцены
Декарт и его последователи картезианцы атом рассматривали как частицу, образованную из материи, которая делится до бесконечности. Атомы, по Декарту, из которых составлено вещество, могли изменяться по форме и по величине. Однако эта гипотеза сравнительно быстро сошла со сцены
Описание слайда:
Декарт и его последователи картезианцы атом рассматривали как частицу, образованную из материи, которая делится до бесконечности. Атомы, по Декарту, из которых составлено вещество, могли изменяться по форме и по величине. Однако эта гипотеза сравнительно быстро сошла со сцены Декарт и его последователи картезианцы атом рассматривали как частицу, образованную из материи, которая делится до бесконечности. Атомы, по Декарту, из которых составлено вещество, могли изменяться по форме и по величине. Однако эта гипотеза сравнительно быстро сошла со сцены

Слайд 10





В начале XIX в. мысль о сложном строении атомов высказал английский ученый Праут. Он исходил из результатов измерений, которые показали, что атомные веса элементов кратны атомному весу водорода. На основе этого Праут и высказал гипотезу, согласно которой атомы всех элементов состоят из атомов водорода.
В начале XIX в. мысль о сложном строении атомов высказал английский ученый Праут. Он исходил из результатов измерений, которые показали, что атомные веса элементов кратны атомному весу водорода. На основе этого Праут и высказал гипотезу, согласно которой атомы всех элементов состоят из атомов водорода.
Описание слайда:
В начале XIX в. мысль о сложном строении атомов высказал английский ученый Праут. Он исходил из результатов измерений, которые показали, что атомные веса элементов кратны атомному весу водорода. На основе этого Праут и высказал гипотезу, согласно которой атомы всех элементов состоят из атомов водорода. В начале XIX в. мысль о сложном строении атомов высказал английский ученый Праут. Он исходил из результатов измерений, которые показали, что атомные веса элементов кратны атомному весу водорода. На основе этого Праут и высказал гипотезу, согласно которой атомы всех элементов состоят из атомов водорода.

Слайд 11





В середине XIX в. с возрождением картезианских идей возникает гипотеза о том, что все атомы представляют собой особые образования в эфире. Такую гипотезу высказал В.Томсон, которые предлагает рассматривать атомы как вихревые кольца в эфире. Эти кольца, если рассматривать эфир как идеальную жидкость, не исчезают, они неделимы, между ними действуют силы, подобные молекулярным силам, и т.д.
В середине XIX в. с возрождением картезианских идей возникает гипотеза о том, что все атомы представляют собой особые образования в эфире. Такую гипотезу высказал В.Томсон, которые предлагает рассматривать атомы как вихревые кольца в эфире. Эти кольца, если рассматривать эфир как идеальную жидкость, не исчезают, они неделимы, между ними действуют силы, подобные молекулярным силам, и т.д.
Описание слайда:
В середине XIX в. с возрождением картезианских идей возникает гипотеза о том, что все атомы представляют собой особые образования в эфире. Такую гипотезу высказал В.Томсон, которые предлагает рассматривать атомы как вихревые кольца в эфире. Эти кольца, если рассматривать эфир как идеальную жидкость, не исчезают, они неделимы, между ними действуют силы, подобные молекулярным силам, и т.д. В середине XIX в. с возрождением картезианских идей возникает гипотеза о том, что все атомы представляют собой особые образования в эфире. Такую гипотезу высказал В.Томсон, которые предлагает рассматривать атомы как вихревые кольца в эфире. Эти кольца, если рассматривать эфир как идеальную жидкость, не исчезают, они неделимы, между ними действуют силы, подобные молекулярным силам, и т.д.

Слайд 12





Новый толчок для развития идеи о сложном строении атома дало открытие Дмитрием Ивановичем Менделеевым (1834-1907) периодического закона. Уже одно это открытие наталкивало на мысль о том, что атомы не являются неделимыми, что они обладают структурой и их нельзя считать первичными материальными образованиями. 
Новый толчок для развития идеи о сложном строении атома дало открытие Дмитрием Ивановичем Менделеевым (1834-1907) периодического закона. Уже одно это открытие наталкивало на мысль о том, что атомы не являются неделимыми, что они обладают структурой и их нельзя считать первичными материальными образованиями.
Описание слайда:
Новый толчок для развития идеи о сложном строении атома дало открытие Дмитрием Ивановичем Менделеевым (1834-1907) периодического закона. Уже одно это открытие наталкивало на мысль о том, что атомы не являются неделимыми, что они обладают структурой и их нельзя считать первичными материальными образованиями. Новый толчок для развития идеи о сложном строении атома дало открытие Дмитрием Ивановичем Менделеевым (1834-1907) периодического закона. Уже одно это открытие наталкивало на мысль о том, что атомы не являются неделимыми, что они обладают структурой и их нельзя считать первичными материальными образованиями.

Слайд 13





Попытка построить теорию строения атома на основе открытия Менделеева была предпринята также профессором Московского университета Б. Н. Анализируя свойства элементов с точки зрения периодического закона Менделеева, он выдвинул гипотезу о сложном строении атома. Атом, по Чичерину, подобен солнечной системе. Он состоит из центральной массы -- ядра, вокруг которого вращаются периферические массы; между массами и ядром действуют силы притяжения, подобные силам тяготения.
Попытка построить теорию строения атома на основе открытия Менделеева была предпринята также профессором Московского университета Б. Н. Анализируя свойства элементов с точки зрения периодического закона Менделеева, он выдвинул гипотезу о сложном строении атома. Атом, по Чичерину, подобен солнечной системе. Он состоит из центральной массы -- ядра, вокруг которого вращаются периферические массы; между массами и ядром действуют силы притяжения, подобные силам тяготения.
Описание слайда:
Попытка построить теорию строения атома на основе открытия Менделеева была предпринята также профессором Московского университета Б. Н. Анализируя свойства элементов с точки зрения периодического закона Менделеева, он выдвинул гипотезу о сложном строении атома. Атом, по Чичерину, подобен солнечной системе. Он состоит из центральной массы -- ядра, вокруг которого вращаются периферические массы; между массами и ядром действуют силы притяжения, подобные силам тяготения. Попытка построить теорию строения атома на основе открытия Менделеева была предпринята также профессором Московского университета Б. Н. Анализируя свойства элементов с точки зрения периодического закона Менделеева, он выдвинул гипотезу о сложном строении атома. Атом, по Чичерину, подобен солнечной системе. Он состоит из центральной массы -- ядра, вокруг которого вращаются периферические массы; между массами и ядром действуют силы притяжения, подобные силам тяготения.

Слайд 14





Первая гипотеза, первая модель атома, на основе новых открытий была разработана В. Томсоном и Дж. Дж. Томсоном. В наиболее законченном виде она была изложена последним в 1903 г. в книге «Электричество и материя». Согласно этой модели, атом состоит из положительного заряда, равномерно заполняющего сферу, размеры которой имеют тот же порядок, что и атом. Внутри сферы находятся отрицательные заряды -- «корпускулы» (термин «электрон» Томсон в данной работе еще не использовал), размеры которых гораздо меньше размеров сферы. Число корпускул в атоме велико. 
Первая гипотеза, первая модель атома, на основе новых открытий была разработана В. Томсоном и Дж. Дж. Томсоном. В наиболее законченном виде она была изложена последним в 1903 г. в книге «Электричество и материя». Согласно этой модели, атом состоит из положительного заряда, равномерно заполняющего сферу, размеры которой имеют тот же порядок, что и атом. Внутри сферы находятся отрицательные заряды -- «корпускулы» (термин «электрон» Томсон в данной работе еще не использовал), размеры которых гораздо меньше размеров сферы. Число корпускул в атоме велико.
Описание слайда:
Первая гипотеза, первая модель атома, на основе новых открытий была разработана В. Томсоном и Дж. Дж. Томсоном. В наиболее законченном виде она была изложена последним в 1903 г. в книге «Электричество и материя». Согласно этой модели, атом состоит из положительного заряда, равномерно заполняющего сферу, размеры которой имеют тот же порядок, что и атом. Внутри сферы находятся отрицательные заряды -- «корпускулы» (термин «электрон» Томсон в данной работе еще не использовал), размеры которых гораздо меньше размеров сферы. Число корпускул в атоме велико. Первая гипотеза, первая модель атома, на основе новых открытий была разработана В. Томсоном и Дж. Дж. Томсоном. В наиболее законченном виде она была изложена последним в 1903 г. в книге «Электричество и материя». Согласно этой модели, атом состоит из положительного заряда, равномерно заполняющего сферу, размеры которой имеют тот же порядок, что и атом. Внутри сферы находятся отрицательные заряды -- «корпускулы» (термин «электрон» Томсон в данной работе еще не использовал), размеры которых гораздо меньше размеров сферы. Число корпускул в атоме велико.

Слайд 15





Японский физик Нагаока в 1904 г. предложил планетарную модель атома. По этой модели атом состоит из положительного ядра, вокруг которого вращается кольцо, состоящее из большого числа электронов. Однако такая гипотеза не привлекла серьезного внимания. В 1905 г. в докладе на 77-м съезде немецких естествоиспытателей и врачей вопроса о планетарной модели атома коснулся Вин. Он высказался против такой модели, поскольку атом, построенный согласно ей, не может быть устойчивым, вследствие того что электроны в таком атоме должны излучать и быстро терять энергию.
Японский физик Нагаока в 1904 г. предложил планетарную модель атома. По этой модели атом состоит из положительного ядра, вокруг которого вращается кольцо, состоящее из большого числа электронов. Однако такая гипотеза не привлекла серьезного внимания. В 1905 г. в докладе на 77-м съезде немецких естествоиспытателей и врачей вопроса о планетарной модели атома коснулся Вин. Он высказался против такой модели, поскольку атом, построенный согласно ей, не может быть устойчивым, вследствие того что электроны в таком атоме должны излучать и быстро терять энергию.
Описание слайда:
Японский физик Нагаока в 1904 г. предложил планетарную модель атома. По этой модели атом состоит из положительного ядра, вокруг которого вращается кольцо, состоящее из большого числа электронов. Однако такая гипотеза не привлекла серьезного внимания. В 1905 г. в докладе на 77-м съезде немецких естествоиспытателей и врачей вопроса о планетарной модели атома коснулся Вин. Он высказался против такой модели, поскольку атом, построенный согласно ей, не может быть устойчивым, вследствие того что электроны в таком атоме должны излучать и быстро терять энергию. Японский физик Нагаока в 1904 г. предложил планетарную модель атома. По этой модели атом состоит из положительного ядра, вокруг которого вращается кольцо, состоящее из большого числа электронов. Однако такая гипотеза не привлекла серьезного внимания. В 1905 г. в докладе на 77-м съезде немецких естествоиспытателей и врачей вопроса о планетарной модели атома коснулся Вин. Он высказался против такой модели, поскольку атом, построенный согласно ей, не может быть устойчивым, вследствие того что электроны в таком атоме должны излучать и быстро терять энергию.

Слайд 16





В 1909--1910 гг. сотрудниками лаборатории английского физика Эрнеста Резерфорда (1871--1937) были проведены экспериментальные исследования рассеяния α-частиц тонким слоем вещества. Эти исследования показали, что для большинства           α-частиц, пронизывающих тонкий слой вещества, можно принять, что они рассеиваются силовыми центрами, которые действуют на них с силой, обратно пропорциональной квадрату расстояния. Резерфорд был вынужден в 1911 г. в работе «Рассеяние α-частиц веществом и строение атома» высказаться за планетарную модель атома
В 1909--1910 гг. сотрудниками лаборатории английского физика Эрнеста Резерфорда (1871--1937) были проведены экспериментальные исследования рассеяния α-частиц тонким слоем вещества. Эти исследования показали, что для большинства           α-частиц, пронизывающих тонкий слой вещества, можно принять, что они рассеиваются силовыми центрами, которые действуют на них с силой, обратно пропорциональной квадрату расстояния. Резерфорд был вынужден в 1911 г. в работе «Рассеяние α-частиц веществом и строение атома» высказаться за планетарную модель атома
Описание слайда:
В 1909--1910 гг. сотрудниками лаборатории английского физика Эрнеста Резерфорда (1871--1937) были проведены экспериментальные исследования рассеяния α-частиц тонким слоем вещества. Эти исследования показали, что для большинства α-частиц, пронизывающих тонкий слой вещества, можно принять, что они рассеиваются силовыми центрами, которые действуют на них с силой, обратно пропорциональной квадрату расстояния. Резерфорд был вынужден в 1911 г. в работе «Рассеяние α-частиц веществом и строение атома» высказаться за планетарную модель атома В 1909--1910 гг. сотрудниками лаборатории английского физика Эрнеста Резерфорда (1871--1937) были проведены экспериментальные исследования рассеяния α-частиц тонким слоем вещества. Эти исследования показали, что для большинства α-частиц, пронизывающих тонкий слой вещества, можно принять, что они рассеиваются силовыми центрами, которые действуют на них с силой, обратно пропорциональной квадрату расстояния. Резерфорд был вынужден в 1911 г. в работе «Рассеяние α-частиц веществом и строение атома» высказаться за планетарную модель атома

Слайд 17





Успеха в построении теории атома добился в 1913 г. молодой датский физик Нильс Бор (1885--1962), работавший в лаборатории Резерфорда. Бор понял, что для построения теории, которая объясняла бы и результаты опытов по рассеянию α-частиц, и устойчивость атома, и сериальные закономерности, и ряд других экспериментальных данных, нужно отказаться от некоторых принципов классической физики.
Успеха в построении теории атома добился в 1913 г. молодой датский физик Нильс Бор (1885--1962), работавший в лаборатории Резерфорда. Бор понял, что для построения теории, которая объясняла бы и результаты опытов по рассеянию α-частиц, и устойчивость атома, и сериальные закономерности, и ряд других экспериментальных данных, нужно отказаться от некоторых принципов классической физики.
Можно взять за основу модель атома Резерфорда, но дополнить ее новыми гипотезами, которые не следуют или даже противоречат классическим представлениям. Эти гипотезы известны как постулаты Бора.
Описание слайда:
Успеха в построении теории атома добился в 1913 г. молодой датский физик Нильс Бор (1885--1962), работавший в лаборатории Резерфорда. Бор понял, что для построения теории, которая объясняла бы и результаты опытов по рассеянию α-частиц, и устойчивость атома, и сериальные закономерности, и ряд других экспериментальных данных, нужно отказаться от некоторых принципов классической физики. Успеха в построении теории атома добился в 1913 г. молодой датский физик Нильс Бор (1885--1962), работавший в лаборатории Резерфорда. Бор понял, что для построения теории, которая объясняла бы и результаты опытов по рассеянию α-частиц, и устойчивость атома, и сериальные закономерности, и ряд других экспериментальных данных, нужно отказаться от некоторых принципов классической физики. Можно взять за основу модель атома Резерфорда, но дополнить ее новыми гипотезами, которые не следуют или даже противоречат классическим представлениям. Эти гипотезы известны как постулаты Бора.

Слайд 18





В 1925г. Немецкий физик Паули (1900-1958) сделал новый шаг в развитии теории строения атома. Исследуя дублетный характер спектров щелочных металлов, Паули высказал мысль, что их можно объяснить, если приписать самому электрону некоторую «двузначность», т.е. что электрон    на орбите может находиться в двух состояниях. Принцип Паули проливал новый свет на теорию строения атома. Теперь стало понятным предположение Бора о последовательном заполнении электронных оболочек многоэлектронных атомов
В 1925г. Немецкий физик Паули (1900-1958) сделал новый шаг в развитии теории строения атома. Исследуя дублетный характер спектров щелочных металлов, Паули высказал мысль, что их можно объяснить, если приписать самому электрону некоторую «двузначность», т.е. что электрон    на орбите может находиться в двух состояниях. Принцип Паули проливал новый свет на теорию строения атома. Теперь стало понятным предположение Бора о последовательном заполнении электронных оболочек многоэлектронных атомов
Описание слайда:
В 1925г. Немецкий физик Паули (1900-1958) сделал новый шаг в развитии теории строения атома. Исследуя дублетный характер спектров щелочных металлов, Паули высказал мысль, что их можно объяснить, если приписать самому электрону некоторую «двузначность», т.е. что электрон на орбите может находиться в двух состояниях. Принцип Паули проливал новый свет на теорию строения атома. Теперь стало понятным предположение Бора о последовательном заполнении электронных оболочек многоэлектронных атомов В 1925г. Немецкий физик Паули (1900-1958) сделал новый шаг в развитии теории строения атома. Исследуя дублетный характер спектров щелочных металлов, Паули высказал мысль, что их можно объяснить, если приписать самому электрону некоторую «двузначность», т.е. что электрон на орбите может находиться в двух состояниях. Принцип Паули проливал новый свет на теорию строения атома. Теперь стало понятным предположение Бора о последовательном заполнении электронных оболочек многоэлектронных атомов

Слайд 19


Александрова С.Ю.  учитель физики  МОУ СОШ №48, слайд №19
Описание слайда:



Похожие презентации
Mypresentation.ru
Загрузить презентацию