🗊КОМБИНАТОРИКА. Решение задач. Орлова Л.В., Малышкина С.Ю.

Категория: Обществознание
Нажмите для полного просмотра!
КОМБИНАТОРИКА.  Решение задач.  Орлова Л.В., Малышкина С.Ю., слайд №1КОМБИНАТОРИКА.  Решение задач.  Орлова Л.В., Малышкина С.Ю., слайд №2КОМБИНАТОРИКА.  Решение задач.  Орлова Л.В., Малышкина С.Ю., слайд №3КОМБИНАТОРИКА.  Решение задач.  Орлова Л.В., Малышкина С.Ю., слайд №4КОМБИНАТОРИКА.  Решение задач.  Орлова Л.В., Малышкина С.Ю., слайд №5КОМБИНАТОРИКА.  Решение задач.  Орлова Л.В., Малышкина С.Ю., слайд №6КОМБИНАТОРИКА.  Решение задач.  Орлова Л.В., Малышкина С.Ю., слайд №7КОМБИНАТОРИКА.  Решение задач.  Орлова Л.В., Малышкина С.Ю., слайд №8КОМБИНАТОРИКА.  Решение задач.  Орлова Л.В., Малышкина С.Ю., слайд №9КОМБИНАТОРИКА.  Решение задач.  Орлова Л.В., Малышкина С.Ю., слайд №10КОМБИНАТОРИКА.  Решение задач.  Орлова Л.В., Малышкина С.Ю., слайд №11

Вы можете ознакомиться и скачать КОМБИНАТОРИКА. Решение задач. Орлова Л.В., Малышкина С.Ю.. Презентация содержит 11 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





КОМБИНАТОРИКА.
Решение задач.
Орлова Л.В., Малышкина С.Ю.
Описание слайда:
КОМБИНАТОРИКА. Решение задач. Орлова Л.В., Малышкина С.Ю.

Слайд 2





ОСНОВНЫЕ ПОНЯТИЯ

КОМБИНАТОРИКОЙ называется раздел математики, в котором исследуется, сколько различных комбинаций (всевозможных объединений элементов), подчиненных тем или иным условиям, можно составить из элементов, принадлежащих данному множеству. 
 
Комбинаторная задача – задача, решение которой предполагает рассмотрение перебора различных вариантов.
Описание слайда:
ОСНОВНЫЕ ПОНЯТИЯ КОМБИНАТОРИКОЙ называется раздел математики, в котором исследуется, сколько различных комбинаций (всевозможных объединений элементов), подчиненных тем или иным условиям, можно составить из элементов, принадлежащих данному множеству.   Комбинаторная задача – задача, решение которой предполагает рассмотрение перебора различных вариантов.

Слайд 3





ПРИМЕР.
Из группы теннисистов, в которую входят пять человек – Антонов, Борисов, Григорьев, Сергеев, Фёдоров, тренер выделяет пару для участия в соревнованиях. Сколько существует вариантов выбора такой пары? Записать все варианты. 
Решение: АБ, АГ, АС, АФ, БГ, БС, БФ, ГС, ГФ, СФ – 10 вариантов.
 
Описание слайда:
ПРИМЕР. Из группы теннисистов, в которую входят пять человек – Антонов, Борисов, Григорьев, Сергеев, Фёдоров, тренер выделяет пару для участия в соревнованиях. Сколько существует вариантов выбора такой пары? Записать все варианты. Решение: АБ, АГ, АС, АФ, БГ, БС, БФ, ГС, ГФ, СФ – 10 вариантов.  

Слайд 4





ПРАВИЛО СУММЫ
Если надо выбрать n вещей, причём одну выбрать m способами, а вторую k способами, то или одну или другую вещь можно выбрать
   (m + k) способами.

   Пример. Имеется 8 шаров: в 1 ящик положили 5 шт., а 2- 3 шт.Сколькими способами можно вытащить 1 шар? 
    Решение: из 1 ящика шар можно вытащить 5-ю способами, а из второго 3-мя. Значит, всего 5+3=8 способов
Описание слайда:
ПРАВИЛО СУММЫ Если надо выбрать n вещей, причём одну выбрать m способами, а вторую k способами, то или одну или другую вещь можно выбрать (m + k) способами. Пример. Имеется 8 шаров: в 1 ящик положили 5 шт., а 2- 3 шт.Сколькими способами можно вытащить 1 шар? Решение: из 1 ящика шар можно вытащить 5-ю способами, а из второго 3-мя. Значит, всего 5+3=8 способов

Слайд 5





ПРАВИЛО ПРОИЗВЕДЕНИЯ
Если надо выбрать n вещей, причём одну выбрать m способами, а вторую k способами, то одну и другую можно выбрать (mхk) способами.
   
   Пример. В 1 ящике 5 зелёных, а 2- 3 красных шара. Сколькими способами можно вытащить 1 зелёный и 1 красный шар?
    Решение: зелёный можно выбрать 5-ю способами, а красный – 3-мя. Значит, 1 зелёный и 1 красный можно выбрать 3*5 = 15 способами.
Описание слайда:
ПРАВИЛО ПРОИЗВЕДЕНИЯ Если надо выбрать n вещей, причём одну выбрать m способами, а вторую k способами, то одну и другую можно выбрать (mхk) способами. Пример. В 1 ящике 5 зелёных, а 2- 3 красных шара. Сколькими способами можно вытащить 1 зелёный и 1 красный шар? Решение: зелёный можно выбрать 5-ю способами, а красный – 3-мя. Значит, 1 зелёный и 1 красный можно выбрать 3*5 = 15 способами.

Слайд 6





ЗАДАЧА 1.
Переплетчик должен переплести 12 различных книг в красный, зеленый и коричневые переплеты. Сколькими способами он может это сделать?
Решение: Имеется 12 книг и 3 цвета, значит по правилу произведения возможно 12 * 3 = 36 вариантов переплета.
Описание слайда:
ЗАДАЧА 1. Переплетчик должен переплести 12 различных книг в красный, зеленый и коричневые переплеты. Сколькими способами он может это сделать? Решение: Имеется 12 книг и 3 цвета, значит по правилу произведения возможно 12 * 3 = 36 вариантов переплета.

Слайд 7





ЗАДАЧА 2.
 Сколько существует пятизначных чисел, которые одинаково читаются слева направо и справа налево?
Решение: В таких числах последняя цифра будет такая же, как и первая, а предпоследняя - как и вторая. Третья цифра будет любой. Это можно представить в виде XYZYX, где Y и Z - любые цифры, а X - не ноль. Значит по правилу произведения количество цифр одинаково читающихся как слева направо, так и справа налево равно 9*10*10=900 вариантов.
Описание слайда:
ЗАДАЧА 2. Сколько существует пятизначных чисел, которые одинаково читаются слева направо и справа налево? Решение: В таких числах последняя цифра будет такая же, как и первая, а предпоследняя - как и вторая. Третья цифра будет любой. Это можно представить в виде XYZYX, где Y и Z - любые цифры, а X - не ноль. Значит по правилу произведения количество цифр одинаково читающихся как слева направо, так и справа налево равно 9*10*10=900 вариантов.

Слайд 8





ЗАДАЧА 3.
Сколько различных шестизначных чисел можно составить из цифр 0, 1, 2, 3, 4,5, если цифры в числе не повторяются?
Решение. В шестизначном числе на первом месте могут стаять все цифры кроме нуля. Значит на первое место претендуют 5 цифр, на второе – 5 цифр, т. к. одну цифру мы уже заняли на первом месте, на третье место – 4, на четвёртое – 3, на пятое – 2 , на шестое – 1. По правилу произведения всего чисел:
     5 * 5 * 4 * 3 * 2 * 1 = 600.
Описание слайда:
ЗАДАЧА 3. Сколько различных шестизначных чисел можно составить из цифр 0, 1, 2, 3, 4,5, если цифры в числе не повторяются? Решение. В шестизначном числе на первом месте могут стаять все цифры кроме нуля. Значит на первое место претендуют 5 цифр, на второе – 5 цифр, т. к. одну цифру мы уже заняли на первом месте, на третье место – 4, на четвёртое – 3, на пятое – 2 , на шестое – 1. По правилу произведения всего чисел: 5 * 5 * 4 * 3 * 2 * 1 = 600.

Слайд 9





ЗАДАЧА 4.
Квартет
Проказница Мартышка
Козел,
Осёл,
Да косолапый Мишка
Затеяли играть квартет
…
Стой, братцы стой! – 
Кричит Мартышка, - погодите!
Как музыке идти?
Ведь вы не так сидите…
И так, и этак пересаживались – опять музыка на лад не идет.
Тут пуще прежнего пошли у низ раздоры
И споры,
Кому и как сидеть…
Вероятно, крыловские музыканты так и не перепробовали всех возможных мест. Однако способов не так уж и много. Сколько?
Решение: на первое место претендует 4 участника, на второе – 3, на третье-2, на четвёртое – 1 . По правилу произведения  4*3*2*1= 24 способа пересаживаний.
Описание слайда:
ЗАДАЧА 4. Квартет Проказница Мартышка Козел, Осёл, Да косолапый Мишка Затеяли играть квартет … Стой, братцы стой! – Кричит Мартышка, - погодите! Как музыке идти? Ведь вы не так сидите… И так, и этак пересаживались – опять музыка на лад не идет. Тут пуще прежнего пошли у низ раздоры И споры, Кому и как сидеть… Вероятно, крыловские музыканты так и не перепробовали всех возможных мест. Однако способов не так уж и много. Сколько? Решение: на первое место претендует 4 участника, на второе – 3, на третье-2, на четвёртое – 1 . По правилу произведения 4*3*2*1= 24 способа пересаживаний.

Слайд 10





ЗАДАЧА 5.
При встрече 8 друзей обменялись рукопожатиями. Сколько всего было сделано рукопожатий? 
Решение: Порядок выбора не имеет значения: если Агапеев пожимает руку Зайцеву, то одновременно и Зайцев пожимает руку Агапееву, поэтому общее количество рукопожатий (пар) равно 87:2=28.
Ответ: 28 рукопожатий.
Описание слайда:
ЗАДАЧА 5. При встрече 8 друзей обменялись рукопожатиями. Сколько всего было сделано рукопожатий? Решение: Порядок выбора не имеет значения: если Агапеев пожимает руку Зайцеву, то одновременно и Зайцев пожимает руку Агапееву, поэтому общее количество рукопожатий (пар) равно 87:2=28. Ответ: 28 рукопожатий.

Слайд 11





ПРОВЕРЬ СЕБЯ
Что такое комбинаторика?
В чём состоит правило суммы?
В чём состоит правило произведения?
В меню столовой предложено на выбор 5 первых, 8 вторых и 4 третьих блюда. Сколько различных вариантов обедов, состоящих из одного первого, одного второго и одного третьего блюда, можно составить из предложенного меню? 
(Ответ.160)
Сколькими различными способами можно назначить двух ребят на дежурство по столовой, если в классе 22 учащихся?
(Ответ.231)
Описание слайда:
ПРОВЕРЬ СЕБЯ Что такое комбинаторика? В чём состоит правило суммы? В чём состоит правило произведения? В меню столовой предложено на выбор 5 первых, 8 вторых и 4 третьих блюда. Сколько различных вариантов обедов, состоящих из одного первого, одного второго и одного третьего блюда, можно составить из предложенного меню? (Ответ.160) Сколькими различными способами можно назначить двух ребят на дежурство по столовой, если в классе 22 учащихся? (Ответ.231)



Похожие презентации
Mypresentation.ru
Загрузить презентацию