Описание слайда:
In standard microarrays, the probes are synthesized and then attached via surface engineering to a solid surface by a covalent bond to a chemical matrix (via epoxy-silane, amino-silane, lysine, polyacrylamide or others). The solid surface can be glass or a silicon chip, in which case they are colloquially known as an Affy chip when an Affymetrix chip is used. Other microarray platforms, such as Illumina, use microscopic beads, instead of the large solid support. Alternatively, microarrays can be constructed by the direct synthesis of oligonucleotide probes on solid surfaces. DNA arrays are different from other types of microarray only in that they either measure DNA or use DNA as part of its detection system.
In standard microarrays, the probes are synthesized and then attached via surface engineering to a solid surface by a covalent bond to a chemical matrix (via epoxy-silane, amino-silane, lysine, polyacrylamide or others). The solid surface can be glass or a silicon chip, in which case they are colloquially known as an Affy chip when an Affymetrix chip is used. Other microarray platforms, such as Illumina, use microscopic beads, instead of the large solid support. Alternatively, microarrays can be constructed by the direct synthesis of oligonucleotide probes on solid surfaces. DNA arrays are different from other types of microarray only in that they either measure DNA or use DNA as part of its detection system.
The traditional solid-phase array is a collection of orderly microscopic "spots", called features, each with thousands of identical and specific probes attached to a solid surface, such as glass, plastic or silicon biochip (commonly known as a genome chip, DNA chip or gene array). Thousands of these features can be placed in known locations on a single DNA microarray.
The alternative bead array is a collection of microscopic polystyrene beads, each with a specific probe and a ratio of two or more dyes, which do not interfere with the fluorescent dyes used on the target sequence.