🗊Память компьютера Выполнил: Маньков Данил

Категория: Информатика

Нажмите для полного просмотра!
Память компьютера  Выполнил: Маньков Данил, слайд №1Память компьютера  Выполнил: Маньков Данил, слайд №2Память компьютера  Выполнил: Маньков Данил, слайд №3Память компьютера  Выполнил: Маньков Данил, слайд №4Память компьютера  Выполнил: Маньков Данил, слайд №5Память компьютера  Выполнил: Маньков Данил, слайд №6Память компьютера  Выполнил: Маньков Данил, слайд №7Память компьютера  Выполнил: Маньков Данил, слайд №8Память компьютера  Выполнил: Маньков Данил, слайд №9Память компьютера  Выполнил: Маньков Данил, слайд №10Память компьютера  Выполнил: Маньков Данил, слайд №11

Вы можете ознакомиться и скачать Память компьютера Выполнил: Маньков Данил. Презентация содержит 11 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.


Слайды и текст этой презентации

Слайд 1



Память компьютера
Выполнил: Маньков Данил
Описание слайда:
Память компьютера Выполнил: Маньков Данил

Слайд 2



Виды памяти.
В компьютере имеется несколько видов памяти: кэш-память, оперативная память, видеопамять, внешняя память. Существуют также устройства с встроенной памятью, о которой пользователи часто и не знают. Это память находится в буфере обмена и имеет целью убыстрение операции ввода-вывода (например, для дисков) или хранение ее, пока процессор ее не затребует (например, у клавиатуры). Регистры в центральном процессоре также представляют собой области памяти.
Описание слайда:
Виды памяти. В компьютере имеется несколько видов памяти: кэш-память, оперативная память, видеопамять, внешняя память. Существуют также устройства с встроенной памятью, о которой пользователи часто и не знают. Это память находится в буфере обмена и имеет целью убыстрение операции ввода-вывода (например, для дисков) или хранение ее, пока процессор ее не затребует (например, у клавиатуры). Регистры в центральном процессоре также представляют собой области памяти.

Слайд 3



Внешняя память.
Внешней памятью называется память, которая расположена вне материнской платы и включает в себя дисковую память (на гибких и жестких дисках), память на магнитных лентах, память на звуковой плате, память у принтера и т.д., то есть практически каждое устройство имеет свою память. Эти виды памяти будут рассматриваться в соответствующих разделах. Память в виде регистров, как она устроена и как она работает – это специфическая информация и для понимания работы на компьютере мало что дает, если вы не являетесь системным программистом, и потому здесь не рассмотрена. А теперь приступим к рассмотрению оперативной памяти.
Описание слайда:
Внешняя память. Внешней памятью называется память, которая расположена вне материнской платы и включает в себя дисковую память (на гибких и жестких дисках), память на магнитных лентах, память на звуковой плате, память у принтера и т.д., то есть практически каждое устройство имеет свою память. Эти виды памяти будут рассматриваться в соответствующих разделах. Память в виде регистров, как она устроена и как она работает – это специфическая информация и для понимания работы на компьютере мало что дает, если вы не являетесь системным программистом, и потому здесь не рассмотрена. А теперь приступим к рассмотрению оперативной памяти.

Слайд 4



Оперативная память.
Одним из основных компонентов компьютера является оперативная память, которая служит местом хранения информации и для дальнейшей ее передачи процессору, жесткому диску, другим внешним устройствам. Она распола­гается в специальных разъемах на материнской плате. Оперативная память является тем местом, где хранятся данные и ко­манды, с которыми работает центральный процессор, и представляет собой схему из огромного количества мельчайших конденсаторов и транзисторов (одна такая пара позволяет обычно хранить один бит). Поэтому при выключении компьютера или внезапном отключении электропитания оказывается, что толь­ко что введенная информация пропала. Это происходит потому, что данные не были записаны на жесткий диск, где они могут долго храниться, а находились в оперативной памяти. Если бы не существовало оперативной памяти, то данные располагались бы на жестком диске и время обращения к ним резко бы увеличилось, что привело бы к резкому снижению общей производительности компьютера. 
Оперативную память также обозначают RAM (Random Аccess Memory - память произвольного доступа). Понятие произвольного доступа означает, что можно обратиться к произвольной ячейке памяти, в отличие от последовательного метода доступа, когда для доступа к ячейке нужно вначале прочитать другие данные, которые находятся до данной ячейки (примером может служить магнитная лента).
Описание слайда:
Оперативная память. Одним из основных компонентов компьютера является оперативная память, которая служит местом хранения информации и для дальнейшей ее передачи процессору, жесткому диску, другим внешним устройствам. Она распола­гается в специальных разъемах на материнской плате. Оперативная память является тем местом, где хранятся данные и ко­манды, с которыми работает центральный процессор, и представляет собой схему из огромного количества мельчайших конденсаторов и транзисторов (одна такая пара позволяет обычно хранить один бит). Поэтому при выключении компьютера или внезапном отключении электропитания оказывается, что толь­ко что введенная информация пропала. Это происходит потому, что данные не были записаны на жесткий диск, где они могут долго храниться, а находились в оперативной памяти. Если бы не существовало оперативной памяти, то данные располагались бы на жестком диске и время обращения к ним резко бы увеличилось, что привело бы к резкому снижению общей производительности компьютера. Оперативную память также обозначают RAM (Random Аccess Memory - память произвольного доступа). Понятие произвольного доступа означает, что можно обратиться к произвольной ячейке памяти, в отличие от последовательного метода доступа, когда для доступа к ячейке нужно вначале прочитать другие данные, которые находятся до данной ячейки (примером может служить магнитная лента).

Слайд 5



Виды оперативной памяти.
Существует несколько видов оперативной памяти, но основными являются виды, типа SDRAM (Synchronous Dynamic Random Access Memory – синхронная динамическая память с произвольным доступом):
DDR (Double Data Rate – двойная скорость передачи данных). Удвоенная скорость достигается за счет считывания данных не только по фронту (нарастание сигнала), но и по спаду сигнала. Таким образом, за один такт передается два бита данных, то есть, если частота системной шины равняется 100 Мгц/сек, то получаем эффективную частоту в 200 Мгц/сек. Ширина шины данных составляет 64 бит, то есть для предыдущего примера получаем пропускную способность в 100 Мгц х 2 х 64 бит = 12,8 Гбит/сек. Микросхемы выполняются по технологии 0.13 и 0.09 мкм процесса.
Описание слайда:
Виды оперативной памяти. Существует несколько видов оперативной памяти, но основными являются виды, типа SDRAM (Synchronous Dynamic Random Access Memory – синхронная динамическая память с произвольным доступом): DDR (Double Data Rate – двойная скорость передачи данных). Удвоенная скорость достигается за счет считывания данных не только по фронту (нарастание сигнала), но и по спаду сигнала. Таким образом, за один такт передается два бита данных, то есть, если частота системной шины равняется 100 Мгц/сек, то получаем эффективную частоту в 200 Мгц/сек. Ширина шины данных составляет 64 бит, то есть для предыдущего примера получаем пропускную способность в 100 Мгц х 2 х 64 бит = 12,8 Гбит/сек. Микросхемы выполняются по технологии 0.13 и 0.09 мкм процесса.

Слайд 6



Типы памяти.
Существуют следующие типы памяти: DDR200 для работы на частоте 100 Мгц, DDR266 на частоте 133 Мгц, DDR333 – 166 Мгц, DDR400 – 200 Мгц, DDR433 – 217 Мгц, DDR466 – 233 Мгц, DDR500 – 250 Мгц, DDR533 – 267 Мгц. Платы могут иметь и другое название, которое начинается с РС со значением округленной пропускной способности памяти. Так память DDR200 может иметь название РС1600, память DDR266 название РС2100 (пропускная способность – 2133 мегабайт в секунду), DDR300 – РС2400, DDR333 – РС2700 (пропускная способность – 2 667 МБайт/сек), DDR400 – РС3200, DDR433 – РС3500 (3 467 Мб/с), DDR466 – РС3700, DDR500 – РС4000, DDR533 – РС4300 (4 267Мб/с). Пропускная способность указывается в одноканальном режиме, в двухканальном этот показатель увеличивается в два раза. Большинство плат позволяют работать в двухканальном режиме, но существуют и четырехканальные модули.
Указанная выше частота обозначает гарантированную частоту, на которой работает модуль. Модуль можно использовать на более низкой (это называется underclocking или андерклокинг) и более высокой частоте (overclocking или оверклокинг).
Описание слайда:
Типы памяти. Существуют следующие типы памяти: DDR200 для работы на частоте 100 Мгц, DDR266 на частоте 133 Мгц, DDR333 – 166 Мгц, DDR400 – 200 Мгц, DDR433 – 217 Мгц, DDR466 – 233 Мгц, DDR500 – 250 Мгц, DDR533 – 267 Мгц. Платы могут иметь и другое название, которое начинается с РС со значением округленной пропускной способности памяти. Так память DDR200 может иметь название РС1600, память DDR266 название РС2100 (пропускная способность – 2133 мегабайт в секунду), DDR300 – РС2400, DDR333 – РС2700 (пропускная способность – 2 667 МБайт/сек), DDR400 – РС3200, DDR433 – РС3500 (3 467 Мб/с), DDR466 – РС3700, DDR500 – РС4000, DDR533 – РС4300 (4 267Мб/с). Пропускная способность указывается в одноканальном режиме, в двухканальном этот показатель увеличивается в два раза. Большинство плат позволяют работать в двухканальном режиме, но существуют и четырехканальные модули. Указанная выше частота обозначает гарантированную частоту, на которой работает модуль. Модуль можно использовать на более низкой (это называется underclocking или андерклокинг) и более высокой частоте (overclocking или оверклокинг).

Слайд 7




После включения компьютера начинает работать специальная программа BIOS POST, при этом первый килобайт памяти зарезервирован под таблицу векторов прерываний (IVT), а верхняя часть первого мегабайта содержит программу загрузки операционной системы (BIOS). Данная программа заполняет адреса программ прерываний в таблице IVT и данные, находящиеся во втором килобайте памяти, после чего загружается загрузочная программа в память по адресу 700h, и ей передается управление для загрузки операционной системы. Затем загружается программа прерываний и ядро операционной системы, заменяется загрузочная программа, далее ядро операционной системы запускает конфигурационные файлы Autoexec.bat и Config.sys (или файлы Windows).
Описание слайда:
После включения компьютера начинает работать специальная программа BIOS POST, при этом первый килобайт памяти зарезервирован под таблицу векторов прерываний (IVT), а верхняя часть первого мегабайта содержит программу загрузки операционной системы (BIOS). Данная программа заполняет адреса программ прерываний в таблице IVT и данные, находящиеся во втором килобайте памяти, после чего загружается загрузочная программа в память по адресу 700h, и ей передается управление для загрузки операционной системы. Затем загружается программа прерываний и ядро операционной системы, заменяется загрузочная программа, далее ядро операционной системы запускает конфигурационные файлы Autoexec.bat и Config.sys (или файлы Windows).

Слайд 8



Операционная система.
Операционная система DOS имеет специальную таблицу, называемую списком списков, в которой имеется указатель на первую таблицу МСВ, где указано распределение памяти для программ. Причем первый блок МСВ указывает на распределение памяти для самой DOS, а остальные - для прикладных задач. Одной задаче может принадлежать несколько таких таблиц, в то же время одна таблица относится только к одной программе. В этой таблице определяется память первых 640 килобайт, отсюда и проблема для некоторых старых программ в границе 640 Килобайт. По окончании работы прикладной программы используемая память возвращается прикладной программой для операционной системы. Если программа закончила работать, но осталась в памяти, то такая программа является резидентной. Примером такой программы служит программа работы с мышью. Каждый блок МСВ находится перед описываемой областью. Блок имеет 16 байт данных, которые включают в себя тип блока, идентификатор (если 0, то память, описываемая блоком, свободна) и другие данные. Для того, чтобы просмотреть цепочку МСВ, можно воспользоваться программой Debug или Mem с ключом /d.
Описание слайда:
Операционная система. Операционная система DOS имеет специальную таблицу, называемую списком списков, в которой имеется указатель на первую таблицу МСВ, где указано распределение памяти для программ. Причем первый блок МСВ указывает на распределение памяти для самой DOS, а остальные - для прикладных задач. Одной задаче может принадлежать несколько таких таблиц, в то же время одна таблица относится только к одной программе. В этой таблице определяется память первых 640 килобайт, отсюда и проблема для некоторых старых программ в границе 640 Килобайт. По окончании работы прикладной программы используемая память возвращается прикладной программой для операционной системы. Если программа закончила работать, но осталась в памяти, то такая программа является резидентной. Примером такой программы служит программа работы с мышью. Каждый блок МСВ находится перед описываемой областью. Блок имеет 16 байт данных, которые включают в себя тип блока, идентификатор (если 0, то память, описываемая блоком, свободна) и другие данные. Для того, чтобы просмотреть цепочку МСВ, можно воспользоваться программой Debug или Mem с ключом /d.

Слайд 9



Видеопамять.
В оперативной памяти сохранился буфер с максимальным размером 128 килобайт, который отображает часть видеопамяти в видеоплате, находящейся в видеобуфере. С этим буфером работает центральный процессор, и он может в разные моменты времени отображать там фрагменты видеопамяти для обработки.
Сама видеопамять находится на видеоплате (или на материнской плате, если видеоподсистема интегрирована в плату) и требуется для того, чтобы создавать образ экрана и передавать его на дисплей. Так как изображение обновляется несколько десятков раз в секунду, то во время вывода изображения с одного кадра экрана, следующий начинает обрабатываться в другой части памяти. При большом количестве обработки графической информации, часть вычислений может быть отдана специальному процессору, который находится на видеоплате, например, для таких целей, как вычисление элементарных объектов изображений, что часто используется в видеоиграх. Чем мощнее процессор на видеоплате, тем более качественное изображение выводится на дисплее.
Описание слайда:
Видеопамять. В оперативной памяти сохранился буфер с максимальным размером 128 килобайт, который отображает часть видеопамяти в видеоплате, находящейся в видеобуфере. С этим буфером работает центральный процессор, и он может в разные моменты времени отображать там фрагменты видеопамяти для обработки. Сама видеопамять находится на видеоплате (или на материнской плате, если видеоподсистема интегрирована в плату) и требуется для того, чтобы создавать образ экрана и передавать его на дисплей. Так как изображение обновляется несколько десятков раз в секунду, то во время вывода изображения с одного кадра экрана, следующий начинает обрабатываться в другой части памяти. При большом количестве обработки графической информации, часть вычислений может быть отдана специальному процессору, который находится на видеоплате, например, для таких целей, как вычисление элементарных объектов изображений, что часто используется в видеоиграх. Чем мощнее процессор на видеоплате, тем более качественное изображение выводится на дисплее.

Слайд 10




Микросхемы памяти не устанавливаются непосредственно на материнскую плату, они группируются в несколько модулей и устанавливаются на специальной пластине, называемой форм-фактором SIMM (устарела) или DIMM, которые вставляются в специальный разъем. Часто емкость микросхемы измеряется в битах, а пластины - в байтах.
На пласти­нах желательно устанавливать память с одним временем доступа, желательно одного типа и одной компании. Не во все слоты для оперативной памяти необходимо вставлять пластины, то есть можно оставлять слоты свободными. Например, 512 Мб можно вставить в двух вариантах: или 4 слота по 128 Мб, или в один слот 512 Мб. На каждой пластине может быть разное количество памяти. На пластине может быть несколько элементов, каждый из которых может содержать 256 Кб, 1 Мб, 4 Мб, и некоторые другие.
Описание слайда:
Микросхемы памяти не устанавливаются непосредственно на материнскую плату, они группируются в несколько модулей и устанавливаются на специальной пластине, называемой форм-фактором SIMM (устарела) или DIMM, которые вставляются в специальный разъем. Часто емкость микросхемы измеряется в битах, а пластины - в байтах. На пласти­нах желательно устанавливать память с одним временем доступа, желательно одного типа и одной компании. Не во все слоты для оперативной памяти необходимо вставлять пластины, то есть можно оставлять слоты свободными. Например, 512 Мб можно вставить в двух вариантах: или 4 слота по 128 Мб, или в один слот 512 Мб. На каждой пластине может быть разное количество памяти. На пластине может быть несколько элементов, каждый из которых может содержать 256 Кб, 1 Мб, 4 Мб, и некоторые другие.

Слайд 11



Кэш-память.
При обращении к оперативной памяти проверяется наличие данных в кэш-памяти (которая работает практически как буфер), где хранятся наиболее часто используемые данные для про­грамм. Эти данные дублируются, так как они находятся и в оперативной памяти, и в кэш-памяти.
Для оперативной памяти в 16 Мб достаточно 512 Кб кэш-памяти. Кэш-память более дорогая, чем оперативная и поэтому используется для определенных целей. Конечно, можно было бы использовать сверхбыструю память как оперативную, но она дороже, чем существующая, а так как при работе вся память практически одновременно не используется, а только некоторые ее части, то, используя кэш-память, мы можем существенно увеличить мощность компьютера. 
  Тип кэш- памяти определяется материнской платой либо устанавливается при помощи джамперов, используя переключатели, можно устанавливать ее размер. Саму кэш-память можно отключить при помощи BIOS.
Описание слайда:
Кэш-память. При обращении к оперативной памяти проверяется наличие данных в кэш-памяти (которая работает практически как буфер), где хранятся наиболее часто используемые данные для про­грамм. Эти данные дублируются, так как они находятся и в оперативной памяти, и в кэш-памяти. Для оперативной памяти в 16 Мб достаточно 512 Кб кэш-памяти. Кэш-память более дорогая, чем оперативная и поэтому используется для определенных целей. Конечно, можно было бы использовать сверхбыструю память как оперативную, но она дороже, чем существующая, а так как при работе вся память практически одновременно не используется, а только некоторые ее части, то, используя кэш-память, мы можем существенно увеличить мощность компьютера. Тип кэш- памяти определяется материнской платой либо устанавливается при помощи джамперов, используя переключатели, можно устанавливать ее размер. Саму кэш-память можно отключить при помощи BIOS.



Похожие презентации
Mypresentation.ru
Загрузить презентацию