🗊Презентация Выбор и поведение потребителя

Нажмите для полного просмотра!
Выбор и поведение потребителя, слайд №1Выбор и поведение потребителя, слайд №2Выбор и поведение потребителя, слайд №3Выбор и поведение потребителя, слайд №4Выбор и поведение потребителя, слайд №5Выбор и поведение потребителя, слайд №6Выбор и поведение потребителя, слайд №7Выбор и поведение потребителя, слайд №8Выбор и поведение потребителя, слайд №9Выбор и поведение потребителя, слайд №10Выбор и поведение потребителя, слайд №11Выбор и поведение потребителя, слайд №12Выбор и поведение потребителя, слайд №13Выбор и поведение потребителя, слайд №14Выбор и поведение потребителя, слайд №15Выбор и поведение потребителя, слайд №16Выбор и поведение потребителя, слайд №17Выбор и поведение потребителя, слайд №18Выбор и поведение потребителя, слайд №19Выбор и поведение потребителя, слайд №20Выбор и поведение потребителя, слайд №21Выбор и поведение потребителя, слайд №22Выбор и поведение потребителя, слайд №23Выбор и поведение потребителя, слайд №24Выбор и поведение потребителя, слайд №25Выбор и поведение потребителя, слайд №26Выбор и поведение потребителя, слайд №27Выбор и поведение потребителя, слайд №28Выбор и поведение потребителя, слайд №29Выбор и поведение потребителя, слайд №30Выбор и поведение потребителя, слайд №31Выбор и поведение потребителя, слайд №32Выбор и поведение потребителя, слайд №33Выбор и поведение потребителя, слайд №34Выбор и поведение потребителя, слайд №35Выбор и поведение потребителя, слайд №36Выбор и поведение потребителя, слайд №37Выбор и поведение потребителя, слайд №38Выбор и поведение потребителя, слайд №39Выбор и поведение потребителя, слайд №40Выбор и поведение потребителя, слайд №41Выбор и поведение потребителя, слайд №42Выбор и поведение потребителя, слайд №43Выбор и поведение потребителя, слайд №44Выбор и поведение потребителя, слайд №45Выбор и поведение потребителя, слайд №46Выбор и поведение потребителя, слайд №47Выбор и поведение потребителя, слайд №48Выбор и поведение потребителя, слайд №49Выбор и поведение потребителя, слайд №50Выбор и поведение потребителя, слайд №51Выбор и поведение потребителя, слайд №52Выбор и поведение потребителя, слайд №53Выбор и поведение потребителя, слайд №54Выбор и поведение потребителя, слайд №55Выбор и поведение потребителя, слайд №56Выбор и поведение потребителя, слайд №57Выбор и поведение потребителя, слайд №58Выбор и поведение потребителя, слайд №59Выбор и поведение потребителя, слайд №60

Содержание

Вы можете ознакомиться и скачать презентацию на тему Выбор и поведение потребителя. Доклад-сообщение содержит 60 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Микроэкономика
уровень II (упрощенный)
Практика (4 часа)
Преподаватель:
к.э.н., доцент Павлова 
Елена Евгеньевна
Описание слайда:
Микроэкономика уровень II (упрощенный) Практика (4 часа) Преподаватель: к.э.н., доцент Павлова Елена Евгеньевна

Слайд 2





Выбор и поведение потребителя
Задача №1
Функция полезности индивида имеет вид U(X, Y) = X Y.
а) Какое количество товаров X и Y будет приобретать индивид, если его доход равен 100 ден. ед., цены товаров X и Y соответственно равны PX = 5 ден. ед., PY = 5 ден. ед.? 
б) Найдите количество товаров X и Y при приобретении которых,   максимизируется полезность индивида, если цена товара X возрастет до 20 ден. ед.
в)* Определите величину эффекта замены и эффекта дохода по Хиксу и по Слуцкому, общего эффекта изменения цены.
г)* Определить компенсирующее и эквивалентное изменение дохода. 
д) Вывести функцию спроса на благо Х. 
г) Определить коэффициенты прямой эластичности спроса по цене. 
Все этапы решения представить графически.
Описание слайда:
Выбор и поведение потребителя Задача №1 Функция полезности индивида имеет вид U(X, Y) = X Y. а) Какое количество товаров X и Y будет приобретать индивид, если его доход равен 100 ден. ед., цены товаров X и Y соответственно равны PX = 5 ден. ед., PY = 5 ден. ед.? б) Найдите количество товаров X и Y при приобретении которых, максимизируется полезность индивида, если цена товара X возрастет до 20 ден. ед. в)* Определите величину эффекта замены и эффекта дохода по Хиксу и по Слуцкому, общего эффекта изменения цены. г)* Определить компенсирующее и эквивалентное изменение дохода. д) Вывести функцию спроса на благо Х. г) Определить коэффициенты прямой эластичности спроса по цене. Все этапы решения представить графически.

Слайд 3





а)  Дано: U(X, Y) = X Y, I=100, PX = 5, PY = 5
     Найти: Х1, Y1 
Решение:
Оптимум потребителя:
Бюджетное ограничение:
Оптимальную комбинацию благ (точка Е1) ищем, решая систему уравнений:
Описание слайда:
а) Дано: U(X, Y) = X Y, I=100, PX = 5, PY = 5 Найти: Х1, Y1 Решение: Оптимум потребителя: Бюджетное ограничение: Оптимальную комбинацию благ (точка Е1) ищем, решая систему уравнений:

Слайд 4





Для упрощения расчетов
Для функции Кобба-Дугласа вида:
Описание слайда:
Для упрощения расчетов Для функции Кобба-Дугласа вида:

Слайд 5





б)   Дано: U(X, Y) = X Y, I=100, PX = 20, PY = 5
      Найти: Х1, Y1 
Оптимальную комбинацию благ при росте цены товара Х (точка Е2) ищем, решая систему уравнений:
Описание слайда:
б) Дано: U(X, Y) = X Y, I=100, PX = 20, PY = 5 Найти: Х1, Y1 Оптимальную комбинацию благ при росте цены товара Х (точка Е2) ищем, решая систему уравнений:

Слайд 6





 Изменение оптимума потребителя при росте цены товара Х
Описание слайда:
Изменение оптимума потребителя при росте цены товара Х

Слайд 7






Общий эффект изменения цены. Эффект замены и эффект дохода по Хиксу

Общий эффект изменения цены по Хиксу составит:
X = X2 – X1 = 2,5 – 10= –7,5;  
Y = Y2 – Y1 = 10 – 10 = 0
При разложении общего эффекта сохраняется  первоначальный уровень полезности: U1=XY = 1010=100.
Т.е.  Эффект замены (E1E3 ): 




Эффект дохода (E3E2 ): 

 
Описание слайда:
Общий эффект изменения цены. Эффект замены и эффект дохода по Хиксу Общий эффект изменения цены по Хиксу составит: X = X2 – X1 = 2,5 – 10= –7,5; Y = Y2 – Y1 = 10 – 10 = 0 При разложении общего эффекта сохраняется первоначальный уровень полезности: U1=XY = 1010=100. Т.е. Эффект замены (E1E3 ): Эффект дохода (E3E2 ):  

Слайд 8






Общий эффект изменения цены. Эффект замены и эффект дохода по Хиксу

Точка Е3:




Следовательно, эффект замены: 
X = X3 – X1 = 5 – 10= –5;      
Y = Y3 – Y1 = 20 – 10 = 10,
эффект дохода:
X =X2 – X3 =2,5 – 5 = –2,5;           
Y = Y2 – Y3 = 10 – 20 = –10.
Описание слайда:
Общий эффект изменения цены. Эффект замены и эффект дохода по Хиксу Точка Е3: Следовательно, эффект замены: X = X3 – X1 = 5 – 10= –5; Y = Y3 – Y1 = 20 – 10 = 10, эффект дохода: X =X2 – X3 =2,5 – 5 = –2,5; Y = Y2 – Y3 = 10 – 20 = –10.

Слайд 9





Общий эффект изменения цены. Эффект замены и эффект дохода по Хиксу
Описание слайда:
Общий эффект изменения цены. Эффект замены и эффект дохода по Хиксу

Слайд 10






Общий эффект изменения цены. Эффект замены и эффект дохода по Слуцкому

Общий эффект по Слуцкому тот же самый
После изменения цены товара уровень удовлетворения потребителя останется прежним, если он будет иметь возможность купить первоначальный товарный набор. Для этого ему потребуется: 
I = PхX + PуY= 2010+510 = 250 ден.ед.
Описание слайда:
Общий эффект изменения цены. Эффект замены и эффект дохода по Слуцкому Общий эффект по Слуцкому тот же самый После изменения цены товара уровень удовлетворения потребителя останется прежним, если он будет иметь возможность купить первоначальный товарный набор. Для этого ему потребуется: I = PхX + PуY= 2010+510 = 250 ден.ед.

Слайд 11






Общий эффект изменения цены. Эффект замены и эффект дохода по Слуцкому

Точка Е3:




Следовательно, эффект замены: 
X = X3 – X1 = 6,25 – 10= –3,75;      
Y = Y3 – Y1 = 25 – 10 = 15,
эффект дохода:
X =X2 – X3 =2,5 – 6,25 = –3,75;           
Y = Y2 – Y3 = 10 – 25 = –15.
Описание слайда:
Общий эффект изменения цены. Эффект замены и эффект дохода по Слуцкому Точка Е3: Следовательно, эффект замены: X = X3 – X1 = 6,25 – 10= –3,75; Y = Y3 – Y1 = 25 – 10 = 15, эффект дохода: X =X2 – X3 =2,5 – 6,25 = –3,75; Y = Y2 – Y3 = 10 – 25 = –15.

Слайд 12





 Общий эффект изменения цены. Эффект замены и эффект дохода по Слуцкому
Описание слайда:
Общий эффект изменения цены. Эффект замены и эффект дохода по Слуцкому

Слайд 13






Компенсирующее изменение дохода

Для нахождения на первоначальной кривой безразличия при новой цене блага X индивиду нужно иметь бюджет:
I = (20·5 + 5·20) = 200 ден. ед.
Компенсирующее изменение дохода по Хиксу составит: 200 – 100 = 100
 Для покупки исходной потребительской корзины при новой цене блага X  индивиду нужно иметь бюджет: 
I = (20·6,25 + 5·25) = 250 ден. ед.
Компенсирующее изменение дохода по Слуцкому составит: 250 – 100 = 150
Описание слайда:
Компенсирующее изменение дохода Для нахождения на первоначальной кривой безразличия при новой цене блага X индивиду нужно иметь бюджет: I = (20·5 + 5·20) = 200 ден. ед. Компенсирующее изменение дохода по Хиксу составит: 200 – 100 = 100 Для покупки исходной потребительской корзины при новой цене блага X индивиду нужно иметь бюджет: I = (20·6,25 + 5·25) = 250 ден. ед. Компенсирующее изменение дохода по Слуцкому составит: 250 – 100 = 150

Слайд 14





Компенсирующее изменение дохода (модель Хикса)
Описание слайда:
Компенсирующее изменение дохода (модель Хикса)

Слайд 15





Компенсирующее изменение дохода (модель Слуцкого)
Описание слайда:
Компенсирующее изменение дохода (модель Слуцкого)

Слайд 16






 Эквивалентное изменение дохода 

Точка Е3:


При исходных ценах такой набор благ можно купить при бюджете:
I = 5·5 + 5·5 = 50 ден. ед.  
Эквивалентное изменение дохода равно:  100 – 50 = 50.
Описание слайда:
Эквивалентное изменение дохода Точка Е3: При исходных ценах такой набор благ можно купить при бюджете: I = 5·5 + 5·5 = 50 ден. ед. Эквивалентное изменение дохода равно: 100 – 50 = 50.

Слайд 17





Эквивалентное изменение дохода
Описание слайда:
Эквивалентное изменение дохода

Слайд 18





 Выведение функции спроса на благо Х
В функции спроса объединены только оптимальные объемы блага при соответствующем уровне цены:
Описание слайда:
Выведение функции спроса на благо Х В функции спроса объединены только оптимальные объемы блага при соответствующем уровне цены:

Слайд 19





Выведение функции спроса на благо Х
Описание слайда:
Выведение функции спроса на благо Х

Слайд 20





Коэффициенты прямой эластичности спроса по цене
Дуговая эластичность:




Точечная эластичность:
Описание слайда:
Коэффициенты прямой эластичности спроса по цене Дуговая эластичность: Точечная эластичность:

Слайд 21





Индивидуальный и рыночный спрос
Задача №2 
На рынке имеются три покупателя со следующими функциями спроса: qD1=6-Р; qD2 =4-Р; qD3=10-2Р.
Определить:
1. Сколько единиц товара будет продано на рынке при Р = 3?
2. При какой цене можно будет продать 12 единиц товара?
3. Какова эластичность спроса по цене при Р = 4?
4. Какова эластичность спроса по цене при Q = 1?
Описание слайда:
Индивидуальный и рыночный спрос Задача №2 На рынке имеются три покупателя со следующими функциями спроса: qD1=6-Р; qD2 =4-Р; qD3=10-2Р. Определить: 1. Сколько единиц товара будет продано на рынке при Р = 3? 2. При какой цене можно будет продать 12 единиц товара? 3. Какова эластичность спроса по цене при Р = 4? 4. Какова эластичность спроса по цене при Q = 1?

Слайд 22





Индивидуальный и рыночный спрос
Функции спроса трех потребителей линейны:
qD1=6-Р
qD2 =4-Р
qD3=10-2Р
Для каждого потребителя существует своя область допустимых значений цены:
Pmax1=6,       Pmax2=4,     Pmax3=5, 
когда 0 ≤ Р 4, на рынке присутствуют все три покупателя, в интервале 4 ≤Р5 — первый и третий, а в интервале 5 ≤Р6 — только один первый покупатель.
Описание слайда:
Индивидуальный и рыночный спрос Функции спроса трех потребителей линейны: qD1=6-Р qD2 =4-Р qD3=10-2Р Для каждого потребителя существует своя область допустимых значений цены: Pmax1=6, Pmax2=4, Pmax3=5, когда 0 ≤ Р 4, на рынке присутствуют все три покупателя, в интервале 4 ≤Р5 — первый и третий, а в интервале 5 ≤Р6 — только один первый покупатель.

Слайд 23





Индивидуальный и рыночный спрос

Следовательно:  Функция рыночного спроса  примет вид:
           QD= qD1 + qD2+ qD3= 20 - 4Р,     при 0 ≤ Р 4    и     4  Q ≤ 20 
         QD= qD1 + qD3=16 - 3Р,               при 4 ≤ Р 5    и     1   Q ≤ 4 
         QD= qD1=6-Р,                                при 5 ≤ Р6     и     0   Q ≤ 1
1. Р = 3  QD= 20 - 4Р = 20-12=8
2. Q = 12  QD= 20 - 4Р   12= 20-4P  P = 2
3. Р = 4   QD= 16 – 3P       Q= 4      

4. Q = 1     QD= 6-P       1= 6 - P     P = 5     
Описание слайда:
Индивидуальный и рыночный спрос Следовательно: Функция рыночного спроса примет вид: QD= qD1 + qD2+ qD3= 20 - 4Р, при 0 ≤ Р 4 и 4  Q ≤ 20 QD= qD1 + qD3=16 - 3Р, при 4 ≤ Р 5 и 1  Q ≤ 4 QD= qD1=6-Р, при 5 ≤ Р6 и 0  Q ≤ 1 1. Р = 3  QD= 20 - 4Р = 20-12=8 2. Q = 12  QD= 20 - 4Р  12= 20-4P  P = 2 3. Р = 4  QD= 16 – 3P  Q= 4  4. Q = 1 QD= 6-P  1= 6 - P  P = 5 

Слайд 24





Индивидуальный и рыночный спрос
Описание слайда:
Индивидуальный и рыночный спрос

Слайд 25





Индивидуальное предложение труда
Задача № 4
Предпочтения индивида относительно денег и свободного времени отображается функцией полезности U = (I + 27)0,5F0,25, где I =  wL – заработная плата, F – свободное время, равное разности между календарным временем (Т) и рабочим временем: F = Т – L. Сколько часов индивид будет работать в течение календарного времени Т = 33 при цене труда w = 3 и какова эластичность предложения труда по цене?
Описание слайда:
Индивидуальное предложение труда Задача № 4 Предпочтения индивида относительно денег и свободного времени отображается функцией полезности U = (I + 27)0,5F0,25, где I = wL – заработная плата, F – свободное время, равное разности между календарным временем (Т) и рабочим временем: F = Т – L. Сколько часов индивид будет работать в течение календарного времени Т = 33 при цене труда w = 3 и какова эластичность предложения труда по цене?

Слайд 26





Дано: U = (I + 27)0,5F0,25, Т = 33, w = 3 
Решение:
Цель индивида − максимизировать функцию 
при F = 33 – L и I = wL. 
Оптимум индивида достигается при: 
Следовательно, при w = 3 индивид будет работать 19 часов. 
Определим коэффициент эластичности предложения труда по его цене:
Описание слайда:
Дано: U = (I + 27)0,5F0,25, Т = 33, w = 3 Решение: Цель индивида − максимизировать функцию при F = 33 – L и I = wL. Оптимум индивида достигается при: Следовательно, при w = 3 индивид будет работать 19 часов. Определим коэффициент эластичности предложения труда по его цене:

Слайд 27





 Дано: U = (I + 27)0,5F0,25, Т = 33, w = 3
Описание слайда:
Дано: U = (I + 27)0,5F0,25, Т = 33, w = 3

Слайд 28





Индивидуальная функция предложения капитала
Задача № 5
Предпочтения индивида относительно нынешнего (С0) и будущего (С1) потребления благ отображаются двухпериодной функцией полезности                      . Его доход в текущем периоде I0 = 250, в будущем I1 = 120. Определите объемы его сбережений в текущем периоде и объемы потребления в  обоих  периодах при ставке  процента i = 20%.
Описание слайда:
Индивидуальная функция предложения капитала Задача № 5 Предпочтения индивида относительно нынешнего (С0) и будущего (С1) потребления благ отображаются двухпериодной функцией полезности . Его доход в текущем периоде I0 = 250, в будущем I1 = 120. Определите объемы его сбережений в текущем периоде и объемы потребления в обоих периодах при ставке процента i = 20%.

Слайд 29





Дано: U = C00,6C10,4, I0 = 250, I1 = 120, i = 20%  
Решение:
Индивид максимизирует функцию  
когда
при ограничении С1 = I1 + (I0 – С0)(1+i)
т. е. индивид  дает взаймы.
Описание слайда:
Дано: U = C00,6C10,4, I0 = 250, I1 = 120, i = 20% Решение: Индивид максимизирует функцию когда при ограничении С1 = I1 + (I0 – С0)(1+i) т. е. индивид дает взаймы.

Слайд 30





Дано: U = C00,6C10,25, I0 = 250, I1 = 12, i = 20%
Описание слайда:
Дано: U = C00,6C10,25, I0 = 250, I1 = 12, i = 20%

Слайд 31





Теория фирмы 
Задача № 6
Зависимость выпуска продукции от количества используемого труда отображается функцией: 
1. При каком количестве используемого труда достигается максимум:  а) общего выпуска; б) предельной производительности (предельного продукта) труда; в) средней производительности (среднего продукта) труда. 
2. Определите эластичность выпуска по труду при использовании 5 ед. труда.
Описание слайда:
Теория фирмы Задача № 6 Зависимость выпуска продукции от количества используемого труда отображается функцией: 1. При каком количестве используемого труда достигается максимум: а) общего выпуска; б) предельной производительности (предельного продукта) труда; в) средней производительности (среднего продукта) труда. 2. Определите эластичность выпуска по труду при использовании 5 ед. труда.

Слайд 32





Дано: Q=50L+5L2-0,5L3
а) Функция от одной переменной достигает максимума, когда ее производная равна нулю. 
 
б) Предельная производительность труда: 
достигает максимума при
 
в) Средняя производительность труда: 
достигает максимума при
Описание слайда:
Дано: Q=50L+5L2-0,5L3 а) Функция от одной переменной достигает максимума, когда ее производная равна нулю.   б) Предельная производительность труда: достигает максимума при   в) Средняя производительность труда: достигает максимума при

Слайд 33





Дано: Q=50L+5L2-0,5L3
Описание слайда:
Дано: Q=50L+5L2-0,5L3

Слайд 34





Теория фирмы 
Задача № 7
Фирма, максимизирующая прибыль, работает по технологии Q = L0,25K0,25. Факторы производства она покупает по неизменным ценам:  w = 2; r = 8 и продает свою продукцию по цене Р = 320. Определите: а) выпуск фирмы; б) общие затраты на выпуск; в) средние затраты; г) предельные затраты; д) объем спроса фирмы на труд; е) объем спроса фирмы на капитал; ж) прибыль фирмы; з) излишки продавца.
Описание слайда:
Теория фирмы Задача № 7 Фирма, максимизирующая прибыль, работает по технологии Q = L0,25K0,25. Факторы производства она покупает по неизменным ценам: w = 2; r = 8 и продает свою продукцию по цене Р = 320. Определите: а) выпуск фирмы; б) общие затраты на выпуск; в) средние затраты; г) предельные затраты; д) объем спроса фирмы на труд; е) объем спроса фирмы на капитал; ж) прибыль фирмы; з) излишки продавца.

Слайд 35





Дано: Q = L0,25K0,25, w = 2, r = 8, Р = 320 
Решение:
Если в условии производственная функция, то:
TC(K,L)TC(Q)MC(Q)MC=PQS(P)

ТС=Kr+Lw=8K+2L
В оптимуме: MRTSLK  = МРL / МРK = w/r


TC=8K+8K=16K
Из производственной функции: 
Q=(4K)0,25K0,25=(2K)0,5K=0,5Q2
TC=8Q2
Описание слайда:
Дано: Q = L0,25K0,25, w = 2, r = 8, Р = 320 Решение: Если в условии производственная функция, то: TC(K,L)TC(Q)MC(Q)MC=PQS(P) ТС=Kr+Lw=8K+2L В оптимуме: MRTSLK = МРL / МРK = w/r TC=8K+8K=16K Из производственной функции: Q=(4K)0,25K0,25=(2K)0,5K=0,5Q2 TC=8Q2

Слайд 36





Дано: Q = L0,25K0,25, w = 2, r = 8, Р = 320 
TC=8Q2
MC=TC’(Q)=16Q
MC=P16Q=PQS = P/16
QS = P/16 = 320/16=20
б) LTC = 8·202 = 3200
в) LAC = 3200/20 = 160
г) LMC = 16·20 = 320
д) L = 4·200 = 800 
е) K  = 0,5·400 = 200
ж)= TR-TC = 20·320 – 3200 = 3200
з) RS = 0,5 (P-Pmin)Q=0,5·20·320 = 3200
Описание слайда:
Дано: Q = L0,25K0,25, w = 2, r = 8, Р = 320 TC=8Q2 MC=TC’(Q)=16Q MC=P16Q=PQS = P/16 QS = P/16 = 320/16=20 б) LTC = 8·202 = 3200 в) LAC = 3200/20 = 160 г) LMC = 16·20 = 320 д) L = 4·200 = 800 е) K = 0,5·400 = 200 ж)= TR-TC = 20·320 – 3200 = 3200 з) RS = 0,5 (P-Pmin)Q=0,5·20·320 = 3200

Слайд 37





Теория затрат, теория предложения
Задача № 8
Фирма с функцией общих затрат                            может продать любое количество своей продукции по цене Р = 20. 
1. Определите выпуск фирмы: а) минимизирующий средние затраты; б) максимизирующий прибыль. 
2. Рассчитайте максимальную величину: а) прибыли; б) излишка производителя. 
3. Определите эластичность предложения фирмы по цене, когда она получает максимум прибыли.
Описание слайда:
Теория затрат, теория предложения Задача № 8 Фирма с функцией общих затрат может продать любое количество своей продукции по цене Р = 20. 1. Определите выпуск фирмы: а) минимизирующий средние затраты; б) максимизирующий прибыль. 2. Рассчитайте максимальную величину: а) прибыли; б) излишка производителя. 3. Определите эластичность предложения фирмы по цене, когда она получает максимум прибыли.

Слайд 38





Дано: Q=8+8Q+2Q2,Р = 20. 
Найти: а) Q, ATC  min
               б) Q, П  max
Решение:




Условие максимизации прибыли:
Р=МС
Описание слайда:
Дано: Q=8+8Q+2Q2,Р = 20. Найти: а) Q, ATC  min б) Q, П  max Решение: Условие максимизации прибыли: Р=МС

Слайд 39





Дано: Q=8+8Q+2Q2,Р = 20. 
Найти: а) Пmax 
               б) RS
Решение:

 
 = 203 – 8 – 83 – 29 = 10 
RS = 203 – 83 – 29 = 18
Выводим функцию предложения:
Описание слайда:
Дано: Q=8+8Q+2Q2,Р = 20. Найти: а) Пmax б) RS Решение:  = 203 – 8 – 83 – 29 = 10 RS = 203 – 83 – 29 = 18 Выводим функцию предложения:

Слайд 40





Оптимум по Парето в обмене
Задача № 11
Первый индивид произвел 200 ед. блага А, а второй – 240 ед. блага В. Предпочтения индивидов относительно данных благ отображаются функциями полезности:                          ,
                                   . Индивиды договорились о распределении блага А: QA1 = 120; QА2  = 80.  
а) Сколько блага В должен получить 1-й индивид для достижения оптимального по Парето распределения благ?
б) При какой цене блага А рынок обеспечивает оптимальное по Парето распределение, если РВ = 1? 
в) Рассчитать величину бюджета первого и второго индивидов.
Описание слайда:
Оптимум по Парето в обмене Задача № 11 Первый индивид произвел 200 ед. блага А, а второй – 240 ед. блага В. Предпочтения индивидов относительно данных благ отображаются функциями полезности: , . Индивиды договорились о распределении блага А: QA1 = 120; QА2 = 80. а) Сколько блага В должен получить 1-й индивид для достижения оптимального по Парето распределения благ? б) При какой цене блага А рынок обеспечивает оптимальное по Парето распределение, если РВ = 1? в) Рассчитать величину бюджета первого и второго индивидов.

Слайд 41





Дано:                      ,                          , QA = 200, QВ  = 240,  QA1 = 120; QА2  = 80
Решение:
а) Условие оптимального по Парето распределения благ:
Описание слайда:
Дано: , , QA = 200, QВ = 240, QA1 = 120; QА2 = 80 Решение: а) Условие оптимального по Парето распределения благ:

Слайд 42





Дано:                      ,                          , QA = 200, QВ  = 240,  QA1 = 120; QА2  = 80
Решение:
б) Условие оптимума отдельного потребителя:





в) 
бюджет 1-го индивида 0,8120 + 48 = 144 
бюджет 2-го 0,880 + 192 = 256
Описание слайда:
Дано: , , QA = 200, QВ = 240, QA1 = 120; QА2 = 80 Решение: б) Условие оптимума отдельного потребителя: в) бюджет 1-го индивида 0,8120 + 48 = 144 бюджет 2-го 0,880 + 192 = 256

Слайд 43





Оптимум по Парето в производстве
Задача № 12
Для производства двух благ А и В имеется 240 ед.  труда и 160 ед. капитала. Технологии производства представлены  функциями                                                      . 
При производстве блага А используется 16 ед. капитала, а при производстве блага В – 144 ед. Сколько ед. труда должно быть в отрасли А, чтобы обеспечить эффективность по Парето в производстве?
Описание слайда:
Оптимум по Парето в производстве Задача № 12 Для производства двух благ А и В имеется 240 ед. труда и 160 ед. капитала. Технологии производства представлены функциями . При производстве блага А используется 16 ед. капитала, а при производстве блага В – 144 ед. Сколько ед. труда должно быть в отрасли А, чтобы обеспечить эффективность по Парето в производстве?

Слайд 44





Дано:                                                   , L=240, K=160 KA = 16, KВ  = 144
Решение:
а) Условие оптимального по Парето распределения ресурсов:
Описание слайда:
Дано: , L=240, K=160 KA = 16, KВ = 144 Решение: а) Условие оптимального по Парето распределения ресурсов:

Слайд 45





Парето-оптимальность в производстве и обмене
Задача № 13*
Кривая производственных возможностей описывается уравнением:
                                                   ,
 а функция общественной полезности:  
                                                     .
Определите оптимальные объемы производства каждого блага.
Описание слайда:
Парето-оптимальность в производстве и обмене Задача № 13* Кривая производственных возможностей описывается уравнением: , а функция общественной полезности: . Определите оптимальные объемы производства каждого блага.

Слайд 46





Парето-оптимальность в производстве и обмене
Решение: 
Рассмотрим два способа решения
Первый способ:       MRSBA = MRPTBA

  
   MRPTBA =                 =   (                         )′= |–2 QB| = 2QB
Решая систему:    
получаем: QA= 400;QB = 20.
Описание слайда:
Парето-оптимальность в производстве и обмене Решение: Рассмотрим два способа решения Первый способ: MRSBA = MRPTBA MRPTBA = = ( )′= |–2 QB| = 2QB Решая систему: получаем: QA= 400;QB = 20.

Слайд 47





Парето-оптимальность в производстве и обмене
Описание слайда:
Парето-оптимальность в производстве и обмене

Слайд 48





Парето-оптимальность в производстве и обмене
Второй способ:
Производственные возможности выступают в роли бюджетного ограничения при максимизации функции полезности:
Описание слайда:
Парето-оптимальность в производстве и обмене Второй способ: Производственные возможности выступают в роли бюджетного ограничения при максимизации функции полезности:

Слайд 49





Монополия
Задача №16
  Отраслевой спрос QD = 180 – 2P удовлетворяет единственная фирма с функцией общих затрат: TC = 120 + 12Q + 0,5Q2. 
1. Определите цену и объем продаж, если фирма максимизирует: а) прибыль;  б) выручку;  в) объем продаж.
2. Определите параметры работы фирмы, если бы она могла осуществлять ценовую дискриминацию первой степени.
3. Определите величину дотации за каждую проданную единицу товара, при которой фирма, стремясь максимизировать прибыль, будет продавать 45 ед. 
4. Определите цену и объем продаж, если фирма максимизирует прибыль при наличии 20%-го налога на выручку.
Описание слайда:
Монополия Задача №16 Отраслевой спрос QD = 180 – 2P удовлетворяет единственная фирма с функцией общих затрат: TC = 120 + 12Q + 0,5Q2. 1. Определите цену и объем продаж, если фирма максимизирует: а) прибыль; б) выручку; в) объем продаж. 2. Определите параметры работы фирмы, если бы она могла осуществлять ценовую дискриминацию первой степени. 3. Определите величину дотации за каждую проданную единицу товара, при которой фирма, стремясь максимизировать прибыль, будет продавать 45 ед. 4. Определите цену и объем продаж, если фирма максимизирует прибыль при наличии 20%-го налога на выручку.

Слайд 50





Дано: TC = 120 + 12Q + 0,5Q2
QD = 180 – 2P     P=90-0,5Q
Решение:
Описание слайда:
Дано: TC = 120 + 12Q + 0,5Q2 QD = 180 – 2P  P=90-0,5Q Решение:

Слайд 51





Дано: TC = 120 + 12Q + 0,5Q2
QD = 180 – 2P     P=90-0,5Q
Решение:
Описание слайда:
Дано: TC = 120 + 12Q + 0,5Q2 QD = 180 – 2P  P=90-0,5Q Решение:

Слайд 52





Дано: TC = 120 + 12Q + 0,5Q2
QD = 180 – 2P     P=90-0,5Q
Описание слайда:
Дано: TC = 120 + 12Q + 0,5Q2 QD = 180 – 2P  P=90-0,5Q

Слайд 53





Дано: TC = 120 + 12Q + 0,5Q2
QD = 180 – 2P     P=90-0,5Q, QД=45
Описание слайда:
Дано: TC = 120 + 12Q + 0,5Q2 QD = 180 – 2P  P=90-0,5Q, QД=45

Слайд 54





Дано: TC = 120 + 12Q + 0,5Q2
QD = 180 – 2P     P=90-0,5Q, T=0,2TR
Описание слайда:
Дано: TC = 120 + 12Q + 0,5Q2 QD = 180 – 2P  P=90-0,5Q, T=0,2TR

Слайд 55





Ценовая дискриминация 3 степени
Задача №17
  Монополия может продавать продукцию на двух сегментах рынка с различной эластичностью спроса: Q1 = 200 – 4P1; Q2 = 160 – 2P2. Ее функция общих затрат TC = 10 + 12Q + 0,5Q2. Определить:
а) При каких ценах на каждом из сегментов рынка монополия получит максимум прибыли? 
б) Какую цену установит монополия в случае запрета ценовой дискриминации?
Описание слайда:
Ценовая дискриминация 3 степени Задача №17 Монополия может продавать продукцию на двух сегментах рынка с различной эластичностью спроса: Q1 = 200 – 4P1; Q2 = 160 – 2P2. Ее функция общих затрат TC = 10 + 12Q + 0,5Q2. Определить: а) При каких ценах на каждом из сегментов рынка монополия получит максимум прибыли? б) Какую цену установит монополия в случае запрета ценовой дискриминации?

Слайд 56





Дано: TC = 10 + 12Q + 0,5Q2, 
Q1 = 200 – 4P1     P1=50-0,25Q1
Q2 = 160 – 2P2     P2=80-0,5Q2

Решение:
1. Условие максимизации прибыли при осуществлении ценовой дискриминации третьей степени следующее:
Описание слайда:
Дано: TC = 10 + 12Q + 0,5Q2, Q1 = 200 – 4P1  P1=50-0,25Q1 Q2 = 160 – 2P2  P2=80-0,5Q2 Решение: 1. Условие максимизации прибыли при осуществлении ценовой дискриминации третьей степени следующее:

Слайд 57





Дано: TC = 10 + 12Q + 0,5Q2, 
Q1 = 200 – 4P1     P1=50-0,25Q1   Pmax=50
Q2 = 160 – 2P2     P2=80-0,5Q2   Pmax=80
Описание слайда:
Дано: TC = 10 + 12Q + 0,5Q2, Q1 = 200 – 4P1  P1=50-0,25Q1  Pmax=50 Q2 = 160 – 2P2  P2=80-0,5Q2  Pmax=80

Слайд 58





Ценовой лидер
Задача №21
В отрасли функционируют 80 мелких фирм с одинаковыми функциями затрат TCаут = 2 + 8q2аут  и еще одна крупная фирма, выступающая в роли лидера, с функцией затрат  TCл = 20 + 0,275Qл2 . Отраслевой спрос представлен функцией  QD = 256 – 3P. Какая цена сложится на рынке и как он будет поделен между лидером и аутсайдерами? Определите прибыль лидера и каждого из аутсайдеров.
Описание слайда:
Ценовой лидер Задача №21 В отрасли функционируют 80 мелких фирм с одинаковыми функциями затрат TCаут = 2 + 8q2аут и еще одна крупная фирма, выступающая в роли лидера, с функцией затрат TCл = 20 + 0,275Qл2 . Отраслевой спрос представлен функцией QD = 256 – 3P. Какая цена сложится на рынке и как он будет поделен между лидером и аутсайдерами? Определите прибыль лидера и каждого из аутсайдеров.

Слайд 59





Дано: TCа= 2 + 8q2а , n=80, TCл = 20 + 0,275Qл2, 
QD = 256 – 3P
Решение:
Описание слайда:
Дано: TCа= 2 + 8q2а , n=80, TCл = 20 + 0,275Qл2, QD = 256 – 3P Решение:

Слайд 60





Дано: TCа = 2 + 8qа2, n=80, TCл = 20 + 0,275Qл2, 
QD = 256 – 3P
Описание слайда:
Дано: TCа = 2 + 8qа2, n=80, TCл = 20 + 0,275Qл2, QD = 256 – 3P



Похожие презентации
Mypresentation.ru
Загрузить презентацию