🗊Выбор метода статистического вывода

Категория: Обществознание
Нажмите для полного просмотра!
Выбор метода статистического вывода, слайд №1Выбор метода статистического вывода, слайд №2Выбор метода статистического вывода, слайд №3Выбор метода статистического вывода, слайд №4Выбор метода статистического вывода, слайд №5Выбор метода статистического вывода, слайд №6Выбор метода статистического вывода, слайд №7Выбор метода статистического вывода, слайд №8Выбор метода статистического вывода, слайд №9Выбор метода статистического вывода, слайд №10Выбор метода статистического вывода, слайд №11Выбор метода статистического вывода, слайд №12Выбор метода статистического вывода, слайд №13Выбор метода статистического вывода, слайд №14Выбор метода статистического вывода, слайд №15Выбор метода статистического вывода, слайд №16Выбор метода статистического вывода, слайд №17Выбор метода статистического вывода, слайд №18Выбор метода статистического вывода, слайд №19Выбор метода статистического вывода, слайд №20Выбор метода статистического вывода, слайд №21Выбор метода статистического вывода, слайд №22Выбор метода статистического вывода, слайд №23Выбор метода статистического вывода, слайд №24Выбор метода статистического вывода, слайд №25Выбор метода статистического вывода, слайд №26Выбор метода статистического вывода, слайд №27

Содержание

Вы можете ознакомиться и скачать Выбор метода статистического вывода. Презентация содержит 27 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Выбор метода статистического вывода
Описание слайда:
Выбор метода статистического вывода

Слайд 2





Нормальное распределение как стандарт
Описание слайда:
Нормальное распределение как стандарт

Слайд 3





Статистическая гипотеза
Это утверждение относительно неизвестного параметра генеральной совокупности, которое формулируется для проверки надежности связи и которое можно проверить по известным выборочным статистикам – результатам исследования.
Описание слайда:
Статистическая гипотеза Это утверждение относительно неизвестного параметра генеральной совокупности, которое формулируется для проверки надежности связи и которое можно проверить по известным выборочным статистикам – результатам исследования.

Слайд 4





Статистическая гипотеза
Основная (нулевая) гипотеза (H0) – содержит утверждение об отсутствии связи в генеральной совокупности и доступна проверке методами статистического вывода.
Альтернативная гипотеза (H1) – принимается при отклонении H0 и содержит утверждение о наличии связи.
При этом нулевая и альтернативная гипотеза представляют собой полную группу несовместных событий.
Описание слайда:
Статистическая гипотеза Основная (нулевая) гипотеза (H0) – содержит утверждение об отсутствии связи в генеральной совокупности и доступна проверке методами статистического вывода. Альтернативная гипотеза (H1) – принимается при отклонении H0 и содержит утверждение о наличии связи. При этом нулевая и альтернативная гипотеза представляют собой полную группу несовместных событий.

Слайд 5





Измерительные шкалы (неметрические):
Номинативная шкала, или шкала наименований. Объекты группируются по различным классам так, чтобы внутри класса они были идентичны по измеряемому свойству.
Ранговая, или порядковая шкала. Измерение в этой шкале предполагает приписывание объектам чисел в зависимости от степени выраженности измеряемого свойства.
Описание слайда:
Измерительные шкалы (неметрические): Номинативная шкала, или шкала наименований. Объекты группируются по различным классам так, чтобы внутри класса они были идентичны по измеряемому свойству. Ранговая, или порядковая шкала. Измерение в этой шкале предполагает приписывание объектам чисел в зависимости от степени выраженности измеряемого свойства.

Слайд 6





Измерительные шкалы (метрические):
Интервальная шкала. Это такое измерение, при котором числа отражают не только различия между объектами в уровне выраженности свойства, но и то, насколько больше или меньше выражено это свойство.
Абсолютная шкала, или шкала отношений. Измерение в этой шкале отличается от интервального тем, что в ней устанавливается нулевая точка, соответствующая полному отсутствию выраженности измеряемого свойства.
Описание слайда:
Измерительные шкалы (метрические): Интервальная шкала. Это такое измерение, при котором числа отражают не только различия между объектами в уровне выраженности свойства, но и то, насколько больше или меньше выражено это свойство. Абсолютная шкала, или шкала отношений. Измерение в этой шкале отличается от интервального тем, что в ней устанавливается нулевая точка, соответствующая полному отсутствию выраженности измеряемого свойства.

Слайд 7





Классификация методов статистического вывода
Основания для классификации:
типы шкал, в которых измерены признаки X и Y: качественная шкала (номинативная), количественная шкала (порядковая, метрическая)
количество сравниваемых групп – две и более двух
соотношение сравниваемых групп: зависимые выборки или независимые выборки
Описание слайда:
Классификация методов статистического вывода Основания для классификации: типы шкал, в которых измерены признаки X и Y: качественная шкала (номинативная), количественная шкала (порядковая, метрическая) количество сравниваемых групп – две и более двух соотношение сравниваемых групп: зависимые выборки или независимые выборки

Слайд 8





Классификация методов статистического вывода
Описание слайда:
Классификация методов статистического вывода

Слайд 9





Классификация методов статистического вывода
Описание слайда:
Классификация методов статистического вывода

Слайд 10





Выбор методов статистического вывода
Описание слайда:
Выбор методов статистического вывода

Слайд 11





Параметрические и непараметрические критерии
Критерий различия называют параметрическим, если он основан на конкретном типе распределения генеральной совокупности (как правило, нормальном) или использует параметры этой совокупности (средние, дисперсии и т.д.).
Критерий различия называют непараметрическим, если он не базируется на предположении о типе распределения генеральной совокупности и не использует параметры этой совокупности.
Описание слайда:
Параметрические и непараметрические критерии Критерий различия называют параметрическим, если он основан на конкретном типе распределения генеральной совокупности (как правило, нормальном) или использует параметры этой совокупности (средние, дисперсии и т.д.). Критерий различия называют непараметрическим, если он не базируется на предположении о типе распределения генеральной совокупности и не использует параметры этой совокупности.

Слайд 12





Методы корреляционного анализа
Проверяемая H0: коэффициент корреляции равен нулю.
Условие применения: а) два признака измерены в ранговой или метрической шкале на одной и той же выборке; б) связь между признаками является монотонной (не меняет направления по мере увеличения значений одного из признаков).
Обычно изучается корреляция между множеством P переменных. В таком случае вычисляются корреляции между всеми возможными парами этих переменных. Результатом является корреляционная матрица, включающая P(P-1)/2 значений коэффициентов парной корреляции. Под корреляционным анализом обычно и понимают изучение связей по корреляционной матрице.
Описание слайда:
Методы корреляционного анализа Проверяемая H0: коэффициент корреляции равен нулю. Условие применения: а) два признака измерены в ранговой или метрической шкале на одной и той же выборке; б) связь между признаками является монотонной (не меняет направления по мере увеличения значений одного из признаков). Обычно изучается корреляция между множеством P переменных. В таком случае вычисляются корреляции между всеми возможными парами этих переменных. Результатом является корреляционная матрица, включающая P(P-1)/2 значений коэффициентов парной корреляции. Под корреляционным анализом обычно и понимают изучение связей по корреляционной матрице.

Слайд 13





Методы корреляционного анализа
Методы:
Корреляция r-Пирсона – для метрических переменных. 
Условие применения: а) распределения X и Y существенно не отличаются от нормального.
Дополнительно: частная корреляция для изучения зависимости корреляции X и Y от влияния переменной Z; сравнение корреляций – для независимых и зависимых выборок.
Корреляции r-Спирмена, τ-Кендалла – для порядковых переменных.
Описание слайда:
Методы корреляционного анализа Методы: Корреляция r-Пирсона – для метрических переменных. Условие применения: а) распределения X и Y существенно не отличаются от нормального. Дополнительно: частная корреляция для изучения зависимости корреляции X и Y от влияния переменной Z; сравнение корреляций – для независимых и зависимых выборок. Корреляции r-Спирмена, τ-Кендалла – для порядковых переменных.

Слайд 14





Методы анализа номинативных переменных
В зависимости от цели исследования и структуры исходных данных выделяются три группы методов, соответствующих решаемым задачам:
анализ классификаций;
анализ таблиц сопряженности;
анализ последовательностей (серий).
Описание слайда:
Методы анализа номинативных переменных В зависимости от цели исследования и структуры исходных данных выделяются три группы методов, соответствующих решаемым задачам: анализ классификаций; анализ таблиц сопряженности; анализ последовательностей (серий).

Слайд 15





Методы анализа номинативных переменных
Анализ классификаций.
Условие применения: для каждого объекта (испытуемого) выборки определена его принадлежность к одной из категорий (градаций) X (получено эмпирическое распределение объектов по X); известно теоретическое (ожидаемое) распределение по X (обычно – равномерное).
Проверяемая H0: эмпирическое (наблюдаемое) распределение предпочтений не отличается от теоретического (ожидаемого).
Метод: критерий χ2-Пирсона.
Описание слайда:
Методы анализа номинативных переменных Анализ классификаций. Условие применения: для каждого объекта (испытуемого) выборки определена его принадлежность к одной из категорий (градаций) X (получено эмпирическое распределение объектов по X); известно теоретическое (ожидаемое) распределение по X (обычно – равномерное). Проверяемая H0: эмпирическое (наблюдаемое) распределение предпочтений не отличается от теоретического (ожидаемого). Метод: критерий χ2-Пирсона.

Слайд 16





Методы анализа номинативных переменных
Анализ таблиц сопряженности.
Условие применения: для каждого объекта (испытуемого) выборки определена его принадлежность к одной из категорий (градаций) X и к одной из категорий (градаций) Y (получена перекрестная классификация объектов по двум основаниям X и Y).
Следует различать три ситуации – в зависимости от числа градаций и соотношения X и Y:
число градаций X и (или) Y больше двух (общий случай);
таблицы сопряженности 2х2 с независимыми выборками;
таблицы сопряженности 2х2 с повторными измерениями.
Описание слайда:
Методы анализа номинативных переменных Анализ таблиц сопряженности. Условие применения: для каждого объекта (испытуемого) выборки определена его принадлежность к одной из категорий (градаций) X и к одной из категорий (градаций) Y (получена перекрестная классификация объектов по двум основаниям X и Y). Следует различать три ситуации – в зависимости от числа градаций и соотношения X и Y: число градаций X и (или) Y больше двух (общий случай); таблицы сопряженности 2х2 с независимыми выборками; таблицы сопряженности 2х2 с повторными измерениями.

Слайд 17





Методы анализа номинативных переменных
Анализ последовательностей (серий)
Условие применения: объекты упорядочены (по времени или по уровню выраженности признака); каждый объект отнесен к одной из двух категорий (X или Y).
Проверяемые H0: события X распределены среди событий Y случайно (случай 1); выборки X и Y не различаются по распределению значений количественного признака (случай 2).
Метод: критерий серий.
Описание слайда:
Методы анализа номинативных переменных Анализ последовательностей (серий) Условие применения: объекты упорядочены (по времени или по уровню выраженности признака); каждый объект отнесен к одной из двух категорий (X или Y). Проверяемые H0: события X распределены среди событий Y случайно (случай 1); выборки X и Y не различаются по распределению значений количественного признака (случай 2). Метод: критерий серий.

Слайд 18





Методы сравнения выборок по уровню выраженности признака
В зависимости от решаемых задач методы внутри этой группы классифицируются по трем основаниям:
► Количество градаций X:
а) сравниваются 2 выборки;
б) сравниваются больше двух выборок
► Зависимость выборок: 
а) сравниваемые выборки независимы;
б) сравниваемые выборки зависимы.
► Шкала Y:
а) Y – ранговая переменная;
б) Y – метрическая переменная.
Описание слайда:
Методы сравнения выборок по уровню выраженности признака В зависимости от решаемых задач методы внутри этой группы классифицируются по трем основаниям: ► Количество градаций X: а) сравниваются 2 выборки; б) сравниваются больше двух выборок ► Зависимость выборок: а) сравниваемые выборки независимы; б) сравниваемые выборки зависимы. ► Шкала Y: а) Y – ранговая переменная; б) Y – метрическая переменная.

Слайд 19





Сравнение двух независимых выборок
Условия применения: признак измерен у объектов (испытуемых), каждый из которых принадлежит к одной из двух независимых выборок.
Методы:
Y – метрическая переменная: сравнений двух средних значений (параметрический критерий t-Стьюдента для независимых выборок).
Условия применения: признак измерен в а) метрической шкале; б) дисперсии двух выборок гомогенны (статистически достоверно не различаются). Если не выполняется хотя бы одно из этих условий то применяется непараметрический критерий U-Манна-Уитни.
Дополнительно: возможно сравнений двух дисперсий (параметрический критерий F-Фишера).
Y – ранговая (порядковая) переменная: сравнение двух независимых выборок по уровню выраженности порядковой и бинарной переменной (критерий U-Манна-Уитни, критерий серий).
Описание слайда:
Сравнение двух независимых выборок Условия применения: признак измерен у объектов (испытуемых), каждый из которых принадлежит к одной из двух независимых выборок. Методы: Y – метрическая переменная: сравнений двух средних значений (параметрический критерий t-Стьюдента для независимых выборок). Условия применения: признак измерен в а) метрической шкале; б) дисперсии двух выборок гомогенны (статистически достоверно не различаются). Если не выполняется хотя бы одно из этих условий то применяется непараметрический критерий U-Манна-Уитни. Дополнительно: возможно сравнений двух дисперсий (параметрический критерий F-Фишера). Y – ранговая (порядковая) переменная: сравнение двух независимых выборок по уровню выраженности порядковой и бинарной переменной (критерий U-Манна-Уитни, критерий серий).

Слайд 20





Сравнение двух зависимых выборок 
Условия применения: а) признак измерен у объектов (испытуемых), каждый из которых принадлежит к одной из двух зависимых выборок: либо признак измерен дважды на одной и той же выборке, либо каждому испытуемому из одной выборки поставлен в соответствие по определенному критерию испытуемый из другой выборки; б) измерения положительно коррелируют. Если эти условия не выполняются, то выборки следуют признать независимыми.
Методы:
Y – метрическая переменная: сравнений двух средних значений (параметрический критерий t-Стьюдента для зависимых выборок).
Условия применения: признак измерен в метрической шкале. Если не выполняется хотя бы одно из этих условий то применяется непараметрический критерий T- Вилкоксона.
Y – ранговая (порядковая) переменная: сравнение двух зависимых выборок по уровню выраженности порядковой и бинарной переменной (критерий T- Вилкоксона, критерий знаков).
Описание слайда:
Сравнение двух зависимых выборок Условия применения: а) признак измерен у объектов (испытуемых), каждый из которых принадлежит к одной из двух зависимых выборок: либо признак измерен дважды на одной и той же выборке, либо каждому испытуемому из одной выборки поставлен в соответствие по определенному критерию испытуемый из другой выборки; б) измерения положительно коррелируют. Если эти условия не выполняются, то выборки следуют признать независимыми. Методы: Y – метрическая переменная: сравнений двух средних значений (параметрический критерий t-Стьюдента для зависимых выборок). Условия применения: признак измерен в метрической шкале. Если не выполняется хотя бы одно из этих условий то применяется непараметрический критерий T- Вилкоксона. Y – ранговая (порядковая) переменная: сравнение двух зависимых выборок по уровню выраженности порядковой и бинарной переменной (критерий T- Вилкоксона, критерий знаков).

Слайд 21





Сравнение более двух выборок
Проверяемая H0: несколько совокупностей (которым соответствуют выборки) не отличаются по уровню выраженности измеренного признака.
Описание слайда:
Сравнение более двух выборок Проверяемая H0: несколько совокупностей (которым соответствуют выборки) не отличаются по уровню выраженности измеренного признака.

Слайд 22





Сравнение более двух независимых выборок
Условия применения: признак должен быть измерен у объектов (испытуемых), каждый из которых принадлежит к одной из k независимых выборок (k>2). 
Методы:
Y – метрическая переменная: дисперсионный анализ (ANOVA) для независимых выборок (параметрический метод).
Дополнение: метод допускает сравнение выборок более чем по одному основанию – когда деление на выборки производится по нескольким номинативным переменным, каждая из которых имеет 2 и более градаций.
Условия применения: признак Y измерен в а) метрической шкале, б) дисперсии выборок гомогенны (статистически достоверно не различаются). Если не выполняется хотя бы одно из этих условий, то:
Описание слайда:
Сравнение более двух независимых выборок Условия применения: признак должен быть измерен у объектов (испытуемых), каждый из которых принадлежит к одной из k независимых выборок (k>2). Методы: Y – метрическая переменная: дисперсионный анализ (ANOVA) для независимых выборок (параметрический метод). Дополнение: метод допускает сравнение выборок более чем по одному основанию – когда деление на выборки производится по нескольким номинативным переменным, каждая из которых имеет 2 и более градаций. Условия применения: признак Y измерен в а) метрической шкале, б) дисперсии выборок гомогенны (статистически достоверно не различаются). Если не выполняется хотя бы одно из этих условий, то:

Слайд 23





Сравнение более двух независимых выборок
Y- ранговая (порядковая) переменная: сравнение более двух независимых выборок по уровню выраженности ранговой переменной (непараметрический критерий H-Краскала-Уоллеса).
Ограничение: методы позволяет сравнивать выборки только по одному основанию, когда деление на группы производится по одной номинативной переменной, имеющей более 2-х градаций.
Описание слайда:
Сравнение более двух независимых выборок Y- ранговая (порядковая) переменная: сравнение более двух независимых выборок по уровню выраженности ранговой переменной (непараметрический критерий H-Краскала-Уоллеса). Ограничение: методы позволяет сравнивать выборки только по одному основанию, когда деление на группы производится по одной номинативной переменной, имеющей более 2-х градаций.

Слайд 24





Сравнение более двух зависимых выборок
Условия применения: а) признак измерен у объектов (испытуемых), каждый из которых принадлежит к одной из k зависимых выборок (k>2): как правило, признак измерен несколько раз на одной и той же выборке; б) измерения положительно коррелируют.
Описание слайда:
Сравнение более двух зависимых выборок Условия применения: а) признак измерен у объектов (испытуемых), каждый из которых принадлежит к одной из k зависимых выборок (k>2): как правило, признак измерен несколько раз на одной и той же выборке; б) измерения положительно коррелируют.

Слайд 25





Сравнение более двух зависимых выборок
Методы:
Y- метрическая переменная: дисперсионный анализ (ANOVA) с повторными измерениями (параметрический метод).
Дополнение: метод допускает сравнение выборок более чем по одному основанию – когда помимо деления на зависимые выборки, вводятся номинативные переменные, которые имеют 2 и более градаций и делят испытуемых на независимые выборки.
Условия применения: а) признак Y измерен в метрической шкале; б) дисперсии сравниваемых выборок гомогенны (статистически достоверно не различаются). Если не выполняется хотя бы одно из этих условий, то:
Описание слайда:
Сравнение более двух зависимых выборок Методы: Y- метрическая переменная: дисперсионный анализ (ANOVA) с повторными измерениями (параметрический метод). Дополнение: метод допускает сравнение выборок более чем по одному основанию – когда помимо деления на зависимые выборки, вводятся номинативные переменные, которые имеют 2 и более градаций и делят испытуемых на независимые выборки. Условия применения: а) признак Y измерен в метрической шкале; б) дисперсии сравниваемых выборок гомогенны (статистически достоверно не различаются). Если не выполняется хотя бы одно из этих условий, то:

Слайд 26





Сравнение более двух зависимых выборок
Y- ранговая (порядковая) переменная: сравнение более двух зависимых выборок по уровню выраженности ранговой переменной (непараметрический критерий χ2-Фридмана).
Ограничение: метод позволяет сравнивать зависимые выборки только по одному основанию – повторным измерениям.
Описание слайда:
Сравнение более двух зависимых выборок Y- ранговая (порядковая) переменная: сравнение более двух зависимых выборок по уровню выраженности ранговой переменной (непараметрический критерий χ2-Фридмана). Ограничение: метод позволяет сравнивать зависимые выборки только по одному основанию – повторным измерениям.

Слайд 27





Спасибо за внимание!
Описание слайда:
Спасибо за внимание!



Похожие презентации
Mypresentation.ru
Загрузить презентацию