Слайды и текст этой презентации
Слайд 1
Описание слайда:
Мультимедийные технологии
Борисов В.А.
Красноармейский филиал
ГОУ ВПО «Академия народного хозяйства
при Правительстве РФ»
Красноармейск 2009 г.
Слайд 2
Описание слайда:
Мультимедиа
Слово мультимедиа образовано из латинских: «мульти» — много и «медиа» — среда, носитель, средства сообщения — и его можно перевести как «многообразная среда».
Слайд 3
Описание слайда:
Мультимедиа-продукт
Объединяет в себе двухмерные и трехмерные изображения, звуковое сопровождение, музыку, анимацию, видео-, текстовую и числовую информацию и т.д.
Слайд 4
Описание слайда:
Сферы применения мультимедиа
информационная и рекламная деятельности;
шоу-бизнес;
создание персональных фоно- и видеотек;
компьютерные тренажеры;
компьютерные игры;
обучающие программы;
энциклопедии.
Слайд 5
Описание слайда:
Виртуальная реальность
Создание с помощью компьютера и специальных устройств (шлемов, очков, перчаток и даже костюмов) виртуального (кажущегося) мира, в который «помещается» человек и живет в этом мире по его законам.
Слайд 6
Описание слайда:
Аудио- и видеоинформация и ее особенности
Особенностью, отличающей мультимедиа-технологии от других компьютерных технологий, является обработка аудио- и видеоинформации в реальном режиме времени.
Слайд 7
Описание слайда:
В узком смысле под мультимедиа в компьютерных технологиях понимают именно работу с потоковой аудио- и видеоинформацией, т.е. такой формой получения, обработки и передачи информации, когда она поступает непрерывно, и мы не можем охватить ее целиком.
Слайд 8
Описание слайда:
Компьютерные мультимедиа-технологии — это средства создания и воспроизведения цифровых аудио- и видеозаписей.
Слайд 9
Описание слайда:
Оцифровка звуковой информации
Слайд 10
Описание слайда:
Для преобразования аналогового звукового сигнала в цифровую форму с определенной частотой (частотой дискретизации) производятся измерения (отсчеты) амплитуды звукового сигнала.
Слайд 11
Описание слайда:
Затем непрерывные значения амплитуды тоже переводятся в дискретную форму путем разбивки интервала возможных значений амплитуды на конечное число промежутков и заменой текущего значения амплитуды на ближайшее граничное значение какого-либо интервала.
Слайд 12
Описание слайда:
Количество битов, необходимых для представления получаемых таким образом дискретных значений, называется разрядностью отсчета.
Слайд 13
Описание слайда:
Для обеспечения достаточно хорошего качества преобразования необходимо, чтобы частота дискретизации по меньшей мере вдвое превышала наивысшую частоту сигнала.
Слайд 14
Описание слайда:
Устройство, переводящее аналоговый звуковой сигнал в цифровую форму, называется аналогово-цифровым преобразователем (АЦП), а обратно — цифро-аналоговым преобразователем (ЦАП).
Слайд 15
Описание слайда:
Сочетание частоты дискретизации, разрядности отсчета и количества используемых каналов называют форматом цифрового звука.
Произведение этих величин и даст величину цифрового потока, необходимую для представления этого формата.
Слайд 16
Описание слайда:
Причины сжатия цифровых данных
Если мы запишем на диск «сырой» (несжатый) звук, то нетрудно подсчитать, что минута записи займет около 10 Мбайт, т.е. расходы дисковой памяти на запись звуковых фрагментов будут весьма велики.
Слайд 17
Описание слайда:
Причины сжатия цифровых данных
Вторая причина связана с передачей звуковых данных: если канал связи обеспечивает, например, 33,6 Кбит/с (-3,28 Кбайт/с), то 170 Кбайт/с передать по нему невозможно, и звук просто обязан быть сжат.
Слайд 18
Описание слайда:
Причины сжатия цифровых данных
Прохождение звука по компьютерным цепям и его оцифровка вносят в него искажения, и может оказаться так, что искажения за счет сжатия звука окажутся меньше остальных, а выигрыш в объеме данных окажется значительным.
Слайд 19
Описание слайда:
Все соответствующие алгоритмы основаны на свойствах восприятия звуковых сигналов слуховым аппаратом человека, называемых «психоакустической моделью».
Слайд 20
Описание слайда:
«Психоакустическая модель»
Из звукового сигнала удаляется информация, малозаметная для слуха, в результате чего слуховое восприятие звука практически не меняется.
Такое кодирование относится к методам сжатия с потерями, когда из сжатого сигнала уже невозможно точно восстановить исходную волновую форму, однако степень сжатия гораздо выше.
Слайд 21
Описание слайда:
Сжатие звукового сигнала и его обратная распаковка осуществляются специальными программными модулями, называемыми кодеками (кодерами-декодерами).
Слайд 22
Описание слайда:
Для описания степени сжатия звукового сигнала используется битрейт — скорость битового потока, с которой сжатая информация должна поступать в декодер при восстановлении звукового сигнала.
Слайд 23
Описание слайда:
Битрейт
Измеряется в килобитах в секунду (Кбит/ с) и если, например, он равен 128 Кбит/с, то это означает, что одна секунда звука будет занимать 128 Кбит, или 16 Кбайт.
Слайд 24
Описание слайда:
Чем выше битрейт, тем выше качество звука, получаемого при обратной распаковке и, соответственно, больше размер сжатого звука.
Широко распространенный формат сжатия mрЗ позволяет кодировать звук с битрейтом от 8 до 320 Кбит/с. Наиболее часто в mрЗ используется битрейт 128 Кбит/с, на котором достигается сжатие в 10-12 раз.
Слайд 25
Описание слайда:
Потоковое вещание
Звуковые файлы потокового формата хранятся на сервере и содержащаяся в них информация по специальному протоколу передается в виде сжатого звукового потока на компьютер клиента, где и воспроизводятся соответствующей программой-плеером.
Слайд 26
Описание слайда:
Характерной особенностью потокового вещания является высокая степень сжатия, которая должна обеспечить прохождение сжатого звука через низкоскоростные каналы связи.
Наиболее распространенным среди потоковых систем является формат Real Audio.
Слайд 27
Описание слайда:
Оцифровка видеоинформации
В отличие от оцифровки звука, отсчеты делаются редко (25 раз в секунду), но результатом отсчета является целый кадр.
Слайд 28
Описание слайда:
Существует большое количество алгоритмов сжатия (МРЕG 1, МРЕG 2, МРЕG 4 и др.), служащих различным целям и имеющим совершенно различные характеристики, но все они в той или иной степени нацелены на наиболее эффективное сжатие данных с минимальными потерями качества.
Слайд 29
Описание слайда:
Стандарты МРЕG
Слово МРЕG является сокращением от Moving Picture Expert Group — названия экспертной группы ISО (международной организации по стандартизации) по кодированию и сжатию видео- и аудиоинформации.
Слайд 30
Описание слайда:
МРЕG 1
Предназначен для записи синхронизированных видеоизображений (обычно в формате 81Р 352x288) и звукового сопровождения на СD-RОМ (VideoCD) со скоростью считывания до 1,5 Мбит/с.
Слайд 31
Описание слайда:
МРЕG 2
Поддерживает более высокие разрешения, поскольку поток данных в этом стандарте намного больше (до 40 Мбит/с), чем в МРЕG 1, позволяя записывать полноэкранные фильмы студийного качества.
Слайд 32
Описание слайда:
МРЕG 4
Первоначально создавался для использования в мультимедийных приложениях, использующих узкие каналы связи, например видеоконференции, проводимые через Интернет, и не предназначался для хранения видео.
Слайд 33
Описание слайда:
Неожиданное применение алгоритм сжатия МРЕG 4 получил в качестве средства преобразования DVD-фильмов (формата МРЕG 2) с целью их записи на обычные СD-RОМ гораздо меньшей, чем DVD, емкости.
Слайд 34
Описание слайда:
МРЕG 7
Является еще одним представителем семейства МРЕG и предназначен для детального описания разнородного мультимедийного материала.
Слайд 35
Описание слайда:
Аппаратные средства мультимедиа
Различают средства, предназначенные для подготовки аудио- и видеофайлов и других мультимедиа-продуктов, и средства, предназначенные для их воспроизведения.
Слайд 36
Описание слайда:
Минимальные требования к аппаратным компонентам ПК
В качестве процессора вполне может быть использован любой процессор типа Аthlon или Реntium 4 с памятью 256 Мбайт или более.
Такая конфигурация позволяет использовать операционную систему Windows ХР, наиболее подходящую для работы с мультимедиа.
Слайд 37
Описание слайда:
Минимальные требования к аппаратным компонентам ПК
В состав устройств мультимедиа включают также звуковую плату (например, Sound Blaster), дисковод СD-RОМ или DVD-RОМ, а также современную видеоплату, желательно с видеовходом и видеовыходом.
Слайд 38
Описание слайда:
Комплексность компьютерных технологий и удобство управления всем процессом работы делают использование компьютера в подготовке мультимедиа-продуктов незаменимым.
Слайд 39
Описание слайда:
Программные средства мультимедиа
В связи с большим разнообразием задач, решаемых этими средствами и невозможностью создать такой программный комплекс, который удовлетворял бы всем пожеланиям программные средства создания и воспроизведения мультимедиа исключительно многообразны.
Слайд 40
Описание слайда:
Воспроизведение мультимедиа
Наиболее распространенными являются средства для воспроизведения мультимедиа, называемые обычно проигрывателями, или плеерами.
Слайд 41
Описание слайда:
Плееры
WinAmp;
Windows Media;
Quick Time;
Rеаl Рlауеr.
Слайд 42
Описание слайда:
Создание мультимедийных приложений
Слайд 43
Описание слайда:
Задачи средств создания мультимедиа-продуктов
создание и редактирование растровых и векторных графических изображений, в том числе анимированных (мультфильмов);
оцифровка и сжатие звукозаписей;
создание музыкальных фрагментов с помощью МIDI-синтезатора;
Слайд 44
Описание слайда:
Задачи средств создания мультимедиа-продуктов
редактирование звуковой информации, позволяющее изменить амплитуду сигнала, наложить или убрать фон, вырезать или вставить звуковые фрагменты, подготовить звуковые файлы для включения в окончательный продукт;
видеозахват;
Слайд 45
Описание слайда:
Задачи средств создания мультимедиа-продуктов
синтез трехмерных неподвижных и движущихся изображений;
редактирование видеоизображений и создание клипов, в том числе синхронизация звука и изображения;
Слайд 46
Описание слайда:
Задачи средств создания мультимедиа-продуктов
создание гипертекстов и ссылочной гипермедиа-структуры;
объединение всех мультимедиа-компонентов в единый комплекс;
запись на физический носитель.
Слайд 47
Описание слайда:
Мультимедиа в сети Интернет
Основным сдерживающим фактором, препятствующим широкому распространению мультимедиа в Интернете, является низкая пропускная способность компьютерных сетей.
Слайд 48
Описание слайда:
Мультимедиа можно применять на веб-сайтах в следующих случаях:
приведенные ограничения не являются существенными по сравнению с важностью информации;
интернет-технологии применяются во внутренних высокоскоростных сетях (интранет);
используются потоковые протоколы передачи мультимедиа-информации, позволяющие представлять ее по мере поступления.
Слайд 49
Описание слайда:
Наиболее простым способом размещения мультимедиа на вебстраницах является использование подключаемых к браузеру внешних программных модулей — плагинов.
Слайд 50
Описание слайда:
Использование плагинов
Разработчик веб-страницы размещает место для представления мультимедиа примерно так же, как это делается для изображений, указывая файл с мультимедиа-информацией (аудиофайлом, видеоклипом и т.п.).
Слайд 51
Описание слайда:
Использование плагинов
Когда пользователь открывает такую страницу, браузер определяет тип этого файла, ищет в списке доступных ему плагинов модуль, который может воспроизвести этот файл, и запускает его, передав ему файл, указанный на веб-странице.
Слайд 52
Описание слайда:
Использование плагинов
Плагин, в свою очередь, отображает информацию переданного файла в выделенной ему на веб-странице зоне.
В этой же зоне обычно размещаются элементы управления плагином (вперед, назад и т.п.).
Слайд 53
Описание слайда:
Использование плагинов
С другой стороны, вывод плагина на экран может быть подавлен (например, для звукового файла).
Если нужный плагин не найден, браузер обычно пытается загрузить его из Интернета, после чего плагин встраивается в операционную систему, и его повторная загрузка не требуется.
Презентацию на
тему Мультимедийные технологии можно скачать бесплатно ниже: