🗊Презентация Карбид кремния

Категория: Химия
Нажмите для полного просмотра!
Карбид кремния, слайд №1Карбид кремния, слайд №2Карбид кремния, слайд №3Карбид кремния, слайд №4Карбид кремния, слайд №5Карбид кремния, слайд №6Карбид кремния, слайд №7Карбид кремния, слайд №8Карбид кремния, слайд №9

Вы можете ознакомиться и скачать презентацию на тему Карбид кремния. Доклад-сообщение содержит 9 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Карбид кремния
Описание слайда:
Карбид кремния

Слайд 2





Содержание
Открытие и начало производства
Формы нахождения в природе
Производство
Структура и свойства
Описание слайда:
Содержание Открытие и начало производства Формы нахождения в природе Производство Структура и свойства

Слайд 3





Открытие и начало производства

О ранних, несистематических и часто непризнанных синтезах карбида кремния сообщали Деспретз (1849), Марсден (1880) и Колсон (1882 год)[3]. Широкомасштабное производство начал Эдвард Гудрич Ачесон в 1893. Он запатентовал метод получения порошкообразного карбида кремния 28 февраля 1893[4]. Ачесон также разработал электрическую печь, в которой карбид кремния создаётся до сих пор. Он основал компанию The Carborundum Company для производства порошкообразного вещества, которое первоначально использовалось в качестве абразива[5].
Исторически первым способом использования карбида кремния было использование в качестве абразива. За этим последовало применение и в электронных устройствах. В начале XX века карбид кремния использовался в качестве детектора в первых радиоприемниках[6]. В 1907 году Генри Джозеф Раунд создал первый светодиод, подавая напряжение на кристаллы SiC и наблюдая за желтым, зеленым и оранжевым излучением на катоде. Эти эксперименты были позже повторены О. В. Лосевым в СССР в 1923 году[7].
Описание слайда:
Открытие и начало производства О ранних, несистематических и часто непризнанных синтезах карбида кремния сообщали Деспретз (1849), Марсден (1880) и Колсон (1882 год)[3]. Широкомасштабное производство начал Эдвард Гудрич Ачесон в 1893. Он запатентовал метод получения порошкообразного карбида кремния 28 февраля 1893[4]. Ачесон также разработал электрическую печь, в которой карбид кремния создаётся до сих пор. Он основал компанию The Carborundum Company для производства порошкообразного вещества, которое первоначально использовалось в качестве абразива[5]. Исторически первым способом использования карбида кремния было использование в качестве абразива. За этим последовало применение и в электронных устройствах. В начале XX века карбид кремния использовался в качестве детектора в первых радиоприемниках[6]. В 1907 году Генри Джозеф Раунд создал первый светодиод, подавая напряжение на кристаллы SiC и наблюдая за желтым, зеленым и оранжевым излучением на катоде. Эти эксперименты были позже повторены О. В. Лосевым в СССР в 1923 году[7].

Слайд 4





Формы нахождения в природе

Хоть карбид кремния и является редким веществом на Земле, однако, он широко распространён в космосе. Это вещество распространено в пылевых облаках вокруг богатых углеродом звёзд, также его много в первозданных, не подверженных изменениям, метеоритах, почти исключительно, в форме бета-полиморфа. Анализ зёрен карбида кремния, найденных в Мерчисонском углеродистом хондритовом метеорите, выявил аномальное изотопное соотношение углерода и кремния, что указывает на происхождение данного вещества за пределами Солнечной системы: 99 % зёрен SiC образовалось около богатых углеродом звёзд, принадлежащих к асимптотической ветви гигантов[10]. Карбид кремния можно часто обнаружить вокруг таких звезд по их ИК-спектрам[11].
Описание слайда:
Формы нахождения в природе Хоть карбид кремния и является редким веществом на Земле, однако, он широко распространён в космосе. Это вещество распространено в пылевых облаках вокруг богатых углеродом звёзд, также его много в первозданных, не подверженных изменениям, метеоритах, почти исключительно, в форме бета-полиморфа. Анализ зёрен карбида кремния, найденных в Мерчисонском углеродистом хондритовом метеорите, выявил аномальное изотопное соотношение углерода и кремния, что указывает на происхождение данного вещества за пределами Солнечной системы: 99 % зёрен SiC образовалось около богатых углеродом звёзд, принадлежащих к асимптотической ветви гигантов[10]. Карбид кремния можно часто обнаружить вокруг таких звезд по их ИК-спектрам[11].

Слайд 5





Производство

Чистый карбид кремния можно получить с помощью так называемого процесса Лели[13], в котором порошкообразный SiC возгоняется в атмосфере аргона при 2500 °C и осаждается на более холодной подложке в виде чешуйчатых монокристаллов размерами до 2×2 см. Этот процесс дает высококачественные монокристаллы, в основном состоящие из 6H-SiC фазы (это связано с высокой температурой роста). Улучшенный процесс Лели при участии индукционного нагрева в графитовых тиглях дает еще большие монокристаллы до 10 см в диаметре[14].
Описание слайда:
Производство Чистый карбид кремния можно получить с помощью так называемого процесса Лели[13], в котором порошкообразный SiC возгоняется в атмосфере аргона при 2500 °C и осаждается на более холодной подложке в виде чешуйчатых монокристаллов размерами до 2×2 см. Этот процесс дает высококачественные монокристаллы, в основном состоящие из 6H-SiC фазы (это связано с высокой температурой роста). Улучшенный процесс Лели при участии индукционного нагрева в графитовых тиглях дает еще большие монокристаллы до 10 см в диаметре[14].

Слайд 6





Структура и свойства

Известно примерно 250 кристаллических форм карбида кремния[20]. Полиморфизм SiC характеризуется большим количеством схожих кристаллических структур, называемых политипами. Они являются вариациями одного и того же химического соединения, которые идентичны в двух измерениях, но отличаются в третьем. Таким образом, их можно рассматривать как слои, сложенные в стопку в определённой последовательности[21].
Альфа карбид кремния (α-SiC) является наиболее часто встречающимся полиморфом. Эта модификация образуется при температуре свыше 1700 °C и имеетгексагональную решётку, кристаллическая структура типа вюрцита.
Описание слайда:
Структура и свойства Известно примерно 250 кристаллических форм карбида кремния[20]. Полиморфизм SiC характеризуется большим количеством схожих кристаллических структур, называемых политипами. Они являются вариациями одного и того же химического соединения, которые идентичны в двух измерениях, но отличаются в третьем. Таким образом, их можно рассматривать как слои, сложенные в стопку в определённой последовательности[21]. Альфа карбид кремния (α-SiC) является наиболее часто встречающимся полиморфом. Эта модификация образуется при температуре свыше 1700 °C и имеетгексагональную решётку, кристаллическая структура типа вюрцита.

Слайд 7





Бета-модификация (β-SiC), с кристаллической структурой типа цинковой обманки (аналог структуры алмаза), образуется при температурах ниже 1700 °C[22]. До недавнего времени бета-форма имела сравнительно небольшое коммерческое использование, однако, в настоящее время в связи с использованием его в качестве гетерогенных катализаторов интерес к ней увеличивается. Нагревание бета-формы до температур свыше 1700°С способно приводить к постепенному переходу кубической бетаформы в гексагональную (2Н,4Н,6Н,8Н) и ромбичекую (15R).[23] При повышении температуры и времени процесса все образующиеся формы переходят в конечном итоге в гексагональный альфа-политип 6Н.[24]
Бета-модификация (β-SiC), с кристаллической структурой типа цинковой обманки (аналог структуры алмаза), образуется при температурах ниже 1700 °C[22]. До недавнего времени бета-форма имела сравнительно небольшое коммерческое использование, однако, в настоящее время в связи с использованием его в качестве гетерогенных катализаторов интерес к ней увеличивается. Нагревание бета-формы до температур свыше 1700°С способно приводить к постепенному переходу кубической бетаформы в гексагональную (2Н,4Н,6Н,8Н) и ромбичекую (15R).[23] При повышении температуры и времени процесса все образующиеся формы переходят в конечном итоге в гексагональный альфа-политип 6Н.[24]
Описание слайда:
Бета-модификация (β-SiC), с кристаллической структурой типа цинковой обманки (аналог структуры алмаза), образуется при температурах ниже 1700 °C[22]. До недавнего времени бета-форма имела сравнительно небольшое коммерческое использование, однако, в настоящее время в связи с использованием его в качестве гетерогенных катализаторов интерес к ней увеличивается. Нагревание бета-формы до температур свыше 1700°С способно приводить к постепенному переходу кубической бетаформы в гексагональную (2Н,4Н,6Н,8Н) и ромбичекую (15R).[23] При повышении температуры и времени процесса все образующиеся формы переходят в конечном итоге в гексагональный альфа-политип 6Н.[24] Бета-модификация (β-SiC), с кристаллической структурой типа цинковой обманки (аналог структуры алмаза), образуется при температурах ниже 1700 °C[22]. До недавнего времени бета-форма имела сравнительно небольшое коммерческое использование, однако, в настоящее время в связи с использованием его в качестве гетерогенных катализаторов интерес к ней увеличивается. Нагревание бета-формы до температур свыше 1700°С способно приводить к постепенному переходу кубической бетаформы в гексагональную (2Н,4Н,6Н,8Н) и ромбичекую (15R).[23] При повышении температуры и времени процесса все образующиеся формы переходят в конечном итоге в гексагональный альфа-политип 6Н.[24]

Слайд 8





Существует большой интерес в использовании данного вещества в качестве полупроводникового материала в электронике, где его высокая теплопроводность, высокоеэлектрическое напряжение пробоя и высокая плотность электрического тока делают его перспективным материалом для высокомощных устройств[27], в том числе при создании сверхмощных светодиодов. Карбид кремния имеет очень низкий коэффициент теплового расширения (4,0·10−6K) и в достаточно широком температурном диапазоне эксплуатации он не испытывает фазовых переходов (в том числе фазовых переходов второго рода) из-за которых может произойти разрушение монокристаллов[12].
Существует большой интерес в использовании данного вещества в качестве полупроводникового материала в электронике, где его высокая теплопроводность, высокоеэлектрическое напряжение пробоя и высокая плотность электрического тока делают его перспективным материалом для высокомощных устройств[27], в том числе при создании сверхмощных светодиодов. Карбид кремния имеет очень низкий коэффициент теплового расширения (4,0·10−6K) и в достаточно широком температурном диапазоне эксплуатации он не испытывает фазовых переходов (в том числе фазовых переходов второго рода) из-за которых может произойти разрушение монокристаллов[12].
Описание слайда:
Существует большой интерес в использовании данного вещества в качестве полупроводникового материала в электронике, где его высокая теплопроводность, высокоеэлектрическое напряжение пробоя и высокая плотность электрического тока делают его перспективным материалом для высокомощных устройств[27], в том числе при создании сверхмощных светодиодов. Карбид кремния имеет очень низкий коэффициент теплового расширения (4,0·10−6K) и в достаточно широком температурном диапазоне эксплуатации он не испытывает фазовых переходов (в том числе фазовых переходов второго рода) из-за которых может произойти разрушение монокристаллов[12]. Существует большой интерес в использовании данного вещества в качестве полупроводникового материала в электронике, где его высокая теплопроводность, высокоеэлектрическое напряжение пробоя и высокая плотность электрического тока делают его перспективным материалом для высокомощных устройств[27], в том числе при создании сверхмощных светодиодов. Карбид кремния имеет очень низкий коэффициент теплового расширения (4,0·10−6K) и в достаточно широком температурном диапазоне эксплуатации он не испытывает фазовых переходов (в том числе фазовых переходов второго рода) из-за которых может произойти разрушение монокристаллов[12].

Слайд 9





Спасибо за внимание !
Спасибо за внимание !
Презентацию создал  Давыдов А.Е
Описание слайда:
Спасибо за внимание ! Спасибо за внимание ! Презентацию создал Давыдов А.Е



Похожие презентации
Mypresentation.ru
Загрузить презентацию