🗊Презентация Карбоновые кислоты. Строение

Категория: Химия
Нажмите для полного просмотра!
Карбоновые кислоты. Строение, слайд №1Карбоновые кислоты. Строение, слайд №2Карбоновые кислоты. Строение, слайд №3Карбоновые кислоты. Строение, слайд №4Карбоновые кислоты. Строение, слайд №5Карбоновые кислоты. Строение, слайд №6Карбоновые кислоты. Строение, слайд №7Карбоновые кислоты. Строение, слайд №8Карбоновые кислоты. Строение, слайд №9Карбоновые кислоты. Строение, слайд №10Карбоновые кислоты. Строение, слайд №11Карбоновые кислоты. Строение, слайд №12Карбоновые кислоты. Строение, слайд №13Карбоновые кислоты. Строение, слайд №14

Вы можете ознакомиться и скачать презентацию на тему Карбоновые кислоты. Строение. Доклад-сообщение содержит 14 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1


Карбоновые кислоты. Строение, слайд №1
Описание слайда:

Слайд 2





Строение
Карбоновые кислоты – это вещества, содержащие в молекуле одну или несколько карбоксильных групп. 
Карбоксильная группа – группа атомов
Состав этих кислот будет отражаться общей формулой CnH2nO2, или CnH2n+1COOH, или RCOOH.
Описание слайда:
Строение Карбоновые кислоты – это вещества, содержащие в молекуле одну или несколько карбоксильных групп. Карбоксильная группа – группа атомов Состав этих кислот будет отражаться общей формулой CnH2nO2, или CnH2n+1COOH, или RCOOH.

Слайд 3





Органические кислоты, содержащие в молекуле одну карбоксильную группу, являются одноосновными. Общая формула этих кислот RCOOH. 
Органические кислоты, содержащие в молекуле одну карбоксильную группу, являются одноосновными. Общая формула этих кислот RCOOH. 
Карбоновые кислоты, содержащие две карбоксильные группы, называются двухосновными. К ним относится, например, щавелевая кислота:
Существуют и многоосновные 
    карбоновые кислоты, содержащие 
    более двух карбоксильных групп.
Описание слайда:
Органические кислоты, содержащие в молекуле одну карбоксильную группу, являются одноосновными. Общая формула этих кислот RCOOH. Органические кислоты, содержащие в молекуле одну карбоксильную группу, являются одноосновными. Общая формула этих кислот RCOOH. Карбоновые кислоты, содержащие две карбоксильные группы, называются двухосновными. К ним относится, например, щавелевая кислота: Существуют и многоосновные карбоновые кислоты, содержащие более двух карбоксильных групп.

Слайд 4





В зависимости от природы углеводородного радикала карбоновые кислоты делятся на предельные, непредельные, ароматические. Предельные (или насыщенные) карбоновые кислоты не содержат π-связей в углеводородном радикале. Например, пропановая кислота:
В зависимости от природы углеводородного радикала карбоновые кислоты делятся на предельные, непредельные, ароматические. Предельные (или насыщенные) карбоновые кислоты не содержат π-связей в углеводородном радикале. Например, пропановая кислота:
                                  CH3 – CH2 – C 
    
    В молекулах непредельных карбоновых кислот карбоксильная группа связана с ненасыщенным, непредельным углеводородным радикалом. Например, акриловая кислота: CH2 = CH – COOH  
    Ароматические кислоты содержат в молекуле ароматическое (бензольное) кольцо. Например, бензойная кислота:
Описание слайда:
В зависимости от природы углеводородного радикала карбоновые кислоты делятся на предельные, непредельные, ароматические. Предельные (или насыщенные) карбоновые кислоты не содержат π-связей в углеводородном радикале. Например, пропановая кислота: В зависимости от природы углеводородного радикала карбоновые кислоты делятся на предельные, непредельные, ароматические. Предельные (или насыщенные) карбоновые кислоты не содержат π-связей в углеводородном радикале. Например, пропановая кислота: CH3 – CH2 – C В молекулах непредельных карбоновых кислот карбоксильная группа связана с ненасыщенным, непредельным углеводородным радикалом. Например, акриловая кислота: CH2 = CH – COOH Ароматические кислоты содержат в молекуле ароматическое (бензольное) кольцо. Например, бензойная кислота:

Слайд 5





Номенклатура и изомерия
Название карбоновой кислоты образуется от названия соответствующего алкана с добавлением суффикса –ов, окончания –ая и слова кислота. Нумерация атомов углерода начинается с карбоксильной группы. Например:    H – C  
 
Количество карбоксильных групп указывается в названии префиксами ди-, три-, тетра-:
                                    C – C 
Многие кислоты имеют исторически сложившиеся, или тривиальные, названия.
Описание слайда:
Номенклатура и изомерия Название карбоновой кислоты образуется от названия соответствующего алкана с добавлением суффикса –ов, окончания –ая и слова кислота. Нумерация атомов углерода начинается с карбоксильной группы. Например: H – C Количество карбоксильных групп указывается в названии префиксами ди-, три-, тетра-: C – C Многие кислоты имеют исторически сложившиеся, или тривиальные, названия.

Слайд 6





Физические свойства предельных одноосновных карбоновых кислот
Низшие кислоты, содержащие в молекуле до 4 атомов углерода – жидкости с характерным резким запахом. Кислоты, содержащие от 4 до 9 атомов углерода – вязкие маслянистые жидкости с неприятным запахом; содержащие более 9 атомов углерода в молекуле – твердые вещества, которые не растворяются в воде. 
Температуры кипения предельных одноосновных карбоновых кислот увеличиваются с ростом числа атомов углерода в молекуле и с ростом относительной молекулярной массы.
Описание слайда:
Физические свойства предельных одноосновных карбоновых кислот Низшие кислоты, содержащие в молекуле до 4 атомов углерода – жидкости с характерным резким запахом. Кислоты, содержащие от 4 до 9 атомов углерода – вязкие маслянистые жидкости с неприятным запахом; содержащие более 9 атомов углерода в молекуле – твердые вещества, которые не растворяются в воде. Температуры кипения предельных одноосновных карбоновых кислот увеличиваются с ростом числа атомов углерода в молекуле и с ростом относительной молекулярной массы.

Слайд 7





Молекулы предельных одноосновных карбоновых кислот содержат полярную группу атомов – карбоксил и практически неполярный углеводородный радикал.
Молекулы предельных одноосновных карбоновых кислот содержат полярную группу атомов – карбоксил и практически неполярный углеводородный радикал.
Карбоксильная группа притягивается молекулами воды, образуя с ними водородные связи. С увеличением числа атомов в углеводородном радикале растворимость в воде карбоновых кислот снижается.
Описание слайда:
Молекулы предельных одноосновных карбоновых кислот содержат полярную группу атомов – карбоксил и практически неполярный углеводородный радикал. Молекулы предельных одноосновных карбоновых кислот содержат полярную группу атомов – карбоксил и практически неполярный углеводородный радикал. Карбоксильная группа притягивается молекулами воды, образуя с ними водородные связи. С увеличением числа атомов в углеводородном радикале растворимость в воде карбоновых кислот снижается.

Слайд 8





Химические свойства
Диссоциация с образованием катионов водорода и анионов кислотного остатка:
CH3 – COOH      CH3 – COO- + H+
    Взаимодействие с металлами, стоящими в электрохимическом ряду напряжений до водорода. Так, железо восстанавливает водород из уксусной кислоты: 2CH3 – COOH + Fe      (CH3COO)2Fe + H2
     Взаимодействие с гидроксидами металлов с образованием соли и воды (реакция нейтрализации):
2R – COOH + Ca(OH)2      (R - COO)2Ca + 2H2O
    Взаимодействие с солями слабых кислот с образованием последних:
CH3COOH + C17H35COONa     CH3COONa + C17H35COOH
Описание слайда:
Химические свойства Диссоциация с образованием катионов водорода и анионов кислотного остатка: CH3 – COOH CH3 – COO- + H+ Взаимодействие с металлами, стоящими в электрохимическом ряду напряжений до водорода. Так, железо восстанавливает водород из уксусной кислоты: 2CH3 – COOH + Fe (CH3COO)2Fe + H2 Взаимодействие с гидроксидами металлов с образованием соли и воды (реакция нейтрализации): 2R – COOH + Ca(OH)2 (R - COO)2Ca + 2H2O Взаимодействие с солями слабых кислот с образованием последних: CH3COOH + C17H35COONa CH3COONa + C17H35COOH

Слайд 9





Взаимодействие карбоновых кислот со спиртами с образованием сложных эфиров – реакция этерификации:
Взаимодействие карбоновых кислот со спиртами с образованием сложных эфиров – реакция этерификации:
CH3 – C – OH + C2H5 – OH    CH3 – C – OC2H5 + H2O
    Взаимодействие карбоновых кислот со спиртами катализируется катионами водорода. Реакция этерификации обратима. 
    Реакции присоединения по кратной связи – в них вступают непредельные карбоновые кислоты. Для кислоты, содержащей в радикале одну π-связь, можно записать уравнение в общем виде:
CnH2n-1COOH + H2                CnH2n+1COOH
Описание слайда:
Взаимодействие карбоновых кислот со спиртами с образованием сложных эфиров – реакция этерификации: Взаимодействие карбоновых кислот со спиртами с образованием сложных эфиров – реакция этерификации: CH3 – C – OH + C2H5 – OH CH3 – C – OC2H5 + H2O Взаимодействие карбоновых кислот со спиртами катализируется катионами водорода. Реакция этерификации обратима. Реакции присоединения по кратной связи – в них вступают непредельные карбоновые кислоты. Для кислоты, содержащей в радикале одну π-связь, можно записать уравнение в общем виде: CnH2n-1COOH + H2 CnH2n+1COOH

Слайд 10







Взаимодействие с основными оксидами:
2RCOOH + СаО = (RCOO)2Ca + Н2О
Окисление муравьиной кислоты (эта реакция свойственна только данной кислоте):
2KMnO4 + 5HCOOH + 3H2SO4 → K2SO4 + 2MnSO4 + +5CO2↑ + 8H2O
Реакции замещения (с галогенами) – в нее способны вступать предельные карбоновые кислоты. Например, взаимодействие уксусной кислоты с хлором: 
CH3 – COOH + Cl2                 CH2Cl – COOH + HCl
Описание слайда:
Взаимодействие с основными оксидами: 2RCOOH + СаО = (RCOO)2Ca + Н2О Окисление муравьиной кислоты (эта реакция свойственна только данной кислоте): 2KMnO4 + 5HCOOH + 3H2SO4 → K2SO4 + 2MnSO4 + +5CO2↑ + 8H2O Реакции замещения (с галогенами) – в нее способны вступать предельные карбоновые кислоты. Например, взаимодействие уксусной кислоты с хлором: CH3 – COOH + Cl2 CH2Cl – COOH + HCl

Слайд 11





Способы получения
Карбоновые кислоты могут быть получены окислением первичных спиртов и альдегидов:
R – CH2 – OH       R – C 
Ароматические карбоновые кислоты образуются при окислении гомологов бензола:
                        - CH3                                 - COOH 
Гидролиз различных производных карбоновых кисло также приводит к получению кислот:
CH3 – C – O – C2H5 + H2O       CH3 – COOH + C2H5OH
Описание слайда:
Способы получения Карбоновые кислоты могут быть получены окислением первичных спиртов и альдегидов: R – CH2 – OH R – C Ароматические карбоновые кислоты образуются при окислении гомологов бензола: - CH3 - COOH Гидролиз различных производных карбоновых кисло также приводит к получению кислот: CH3 – C – O – C2H5 + H2O CH3 – COOH + C2H5OH

Слайд 12





Применение
Муравьиная кислота обладает дезинфицирующим свойством и поэтому находит свое применение в пищевой, кожевенной и фармацевтической промышленности, медицине. Она также используется при 
    крашении тканей и бумаги.
Описание слайда:
Применение Муравьиная кислота обладает дезинфицирующим свойством и поэтому находит свое применение в пищевой, кожевенной и фармацевтической промышленности, медицине. Она также используется при крашении тканей и бумаги.

Слайд 13


Карбоновые кислоты. Строение, слайд №13
Описание слайда:

Слайд 14






Соли пальмитиновой и стеариновой кислот – стеараты и пальмитаты – обладают моющим действием, поэтому их еще называют мылами.
Широкое применение в технике находят соли олеиновой кислоты.
Щавелевая кислота применяется при полировке металлов, в деревообрабатывающей и кожевенной промышленности.
Описание слайда:
Соли пальмитиновой и стеариновой кислот – стеараты и пальмитаты – обладают моющим действием, поэтому их еще называют мылами. Широкое применение в технике находят соли олеиновой кислоты. Щавелевая кислота применяется при полировке металлов, в деревообрабатывающей и кожевенной промышленности.



Похожие презентации
Mypresentation.ru
Загрузить презентацию