🗊Презентация Представление (кодирование) чисел

Категория: Информатика
Нажмите для полного просмотра!
Представление (кодирование) чисел, слайд №1Представление (кодирование) чисел, слайд №2Представление (кодирование) чисел, слайд №3Представление (кодирование) чисел, слайд №4Представление (кодирование) чисел, слайд №5Представление (кодирование) чисел, слайд №6Представление (кодирование) чисел, слайд №7Представление (кодирование) чисел, слайд №8Представление (кодирование) чисел, слайд №9Представление (кодирование) чисел, слайд №10Представление (кодирование) чисел, слайд №11Представление (кодирование) чисел, слайд №12Представление (кодирование) чисел, слайд №13Представление (кодирование) чисел, слайд №14Представление (кодирование) чисел, слайд №15Представление (кодирование) чисел, слайд №16Представление (кодирование) чисел, слайд №17Представление (кодирование) чисел, слайд №18Представление (кодирование) чисел, слайд №19

Содержание

Вы можете ознакомиться и скачать презентацию на тему Представление (кодирование) чисел. Доклад-сообщение содержит 19 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





 Представление (кодирование) чисел
Информация и информационные процессы
Описание слайда:
Представление (кодирование) чисел Информация и информационные процессы

Слайд 2





Двоичное кодирование в компьютере
Вся информация, которую обрабатывает компьютер должна быть представлена двоичным кодом с помощью двух цифр: 0 и 1. Эти два символа принято называть двоичными цифрами или битами. 
С помощью двух цифр 0 и 1 можно закодировать любое сообщение. Это явилось причиной того, что в компьютере обязательно должно быть организованно два важных процесса: кодирование и декодирование.
Кодирование – преобразование входной информации в форму, воспринимаемую компьютером, т.е. двоичный код.
Декодирование – преобразование данных из двоичного кода в форму, понятную человеку.
Описание слайда:
Двоичное кодирование в компьютере Вся информация, которую обрабатывает компьютер должна быть представлена двоичным кодом с помощью двух цифр: 0 и 1. Эти два символа принято называть двоичными цифрами или битами. С помощью двух цифр 0 и 1 можно закодировать любое сообщение. Это явилось причиной того, что в компьютере обязательно должно быть организованно два важных процесса: кодирование и декодирование. Кодирование – преобразование входной информации в форму, воспринимаемую компьютером, т.е. двоичный код. Декодирование – преобразование данных из двоичного кода в форму, понятную человеку.

Слайд 3





Почему двоичное кодирование
С точки зрения технической реализации использование двоичной системы счисления для кодирования информации оказалось намного более простым, чем применение других способов. Действительно, удобно кодировать информацию в виде последовательности нулей и единиц, если представить эти значения как два возможных устойчивых состояния электронного элемента:
0 – отсутствие электрического сигнала;
1 – наличие электрического сигнала.
Эти состояния легко различать. Недостаток двоичного кодирования – длинные коды. Но в технике легче иметь дело с большим количеством простых элементов, чем с небольшим числом сложных.
Способы кодирования и декодирования информации в компьютере, в первую очередь, зависит от вида информации, а именно, что должно кодироваться: числа, текст, графические изображения или звук.
Описание слайда:
Почему двоичное кодирование С точки зрения технической реализации использование двоичной системы счисления для кодирования информации оказалось намного более простым, чем применение других способов. Действительно, удобно кодировать информацию в виде последовательности нулей и единиц, если представить эти значения как два возможных устойчивых состояния электронного элемента: 0 – отсутствие электрического сигнала; 1 – наличие электрического сигнала. Эти состояния легко различать. Недостаток двоичного кодирования – длинные коды. Но в технике легче иметь дело с большим количеством простых элементов, чем с небольшим числом сложных. Способы кодирования и декодирования информации в компьютере, в первую очередь, зависит от вида информации, а именно, что должно кодироваться: числа, текст, графические изображения или звук.

Слайд 4





Система счисления 
Для записи информации о количестве объектов используются числа. Числа записываются с помощью набора специальных символов.
Система счисления — способ записи чисел с помощью набора специальных знаков, называемых цифрами.
Описание слайда:
Система счисления Для записи информации о количестве объектов используются числа. Числа записываются с помощью набора специальных символов. Система счисления — способ записи чисел с помощью набора специальных знаков, называемых цифрами.

Слайд 5





Виды систем счисления
Описание слайда:
Виды систем счисления

Слайд 6






Каноническим примером фактически непозиционной системы счисления является римская, в которой в качестве цифр используются латинские буквы:
 I обозначает 1, V - 5, X - 10, L - 50, C - 100, D - 500, M -1000.
Натуральные числа записываются при помощи повторения этих цифр.
Например, II = 1 + 1 = 2, здесь символ I обозначает 1 независимо от места в числе.
Для правильной записи больших чисел римскими цифрами необходимо сначала записать число тысяч, затем сотен, затем десятков и, наконец, единиц.
Пример: число 1988. Одна тысяча M, девять сотен CM, восемьдесят LXXX, восемь VIII. Запишем их вместе: MCMLXXXVIII.
MCMLXXXVIII = 1000+(1000-100)+(50+10+10+10)+5+1+1+1 = 1988 
Для изображения чисел в непозиционной системе счисления нельзя ограничится конечным набором цифр. Кроме того, выполнение арифметических действий в них крайне неудобно.
Описание слайда:
Каноническим примером фактически непозиционной системы счисления является римская, в которой в качестве цифр используются латинские буквы: I обозначает 1, V - 5, X - 10, L - 50, C - 100, D - 500, M -1000. Натуральные числа записываются при помощи повторения этих цифр. Например, II = 1 + 1 = 2, здесь символ I обозначает 1 независимо от места в числе. Для правильной записи больших чисел римскими цифрами необходимо сначала записать число тысяч, затем сотен, затем десятков и, наконец, единиц. Пример: число 1988. Одна тысяча M, девять сотен CM, восемьдесят LXXX, восемь VIII. Запишем их вместе: MCMLXXXVIII. MCMLXXXVIII = 1000+(1000-100)+(50+10+10+10)+5+1+1+1 = 1988 Для изображения чисел в непозиционной системе счисления нельзя ограничится конечным набором цифр. Кроме того, выполнение арифметических действий в них крайне неудобно.

Слайд 7





Позиционные системы счисления
В позиционных системах счисления величина, обозначаемая цифрой в записи числа, зависит от её положения в числе (позиции). 
Количество используемых цифр называется основанием системы счисления.
Например, 11 – это одиннадцать, а не два: 1 + 1 = 2 (сравните с римской системой счисления). Здесь символ 1 имеет различное значение в зависимости от позиции в числе.
Описание слайда:
Позиционные системы счисления В позиционных системах счисления величина, обозначаемая цифрой в записи числа, зависит от её положения в числе (позиции). Количество используемых цифр называется основанием системы счисления. Например, 11 – это одиннадцать, а не два: 1 + 1 = 2 (сравните с римской системой счисления). Здесь символ 1 имеет различное значение в зависимости от позиции в числе.

Слайд 8





Первые позиционные системы счисления
Самой первой такой системой, когда счетным "прибором" служили пальцы рук, была пятеричная. 
Некоторые племена на филиппинских островах используют ее и в наши дни, а в цивилизованных странах ее реликт, как считают специалисты, сохранился только в виде школьной пятибалльной шкалы оценок.
Описание слайда:
Первые позиционные системы счисления Самой первой такой системой, когда счетным "прибором" служили пальцы рук, была пятеричная. Некоторые племена на филиппинских островах используют ее и в наши дни, а в цивилизованных странах ее реликт, как считают специалисты, сохранился только в виде школьной пятибалльной шкалы оценок.

Слайд 9





Двенадцатеричная система счисления
Следующей после пятеричной возникла двенадцатеричная система счисления. Возникла она в древнем Шумере. Некоторые учёные полагают, что такая система возникала у них из подсчёта фаланг на руке большим пальцем. 
Широкое распространение получила двенадцатеричная система счисления в XIX веке. На ее широкое использование в прошлом явно указывают названия числительных во многих языках, а также сохранившиеся в ряде стран способы отсчета времени, денег и соотношения между некоторыми единицами измерения. Год состоит из 12 месяцев, а половина суток состоит из 12 часов. 
Элементом двенадцатеричной системы в современности может служить счёт дюжинами. Первые три степени числа 12 имеют собственные названия: 1 дюжина = 12 штук; 1 гросс = 12 дюжин = 144 штуки; 1 масса = 12 гроссов = 144 дюжины = 1728 штук. 
Английский фунт состоит из 12 шиллингов.
Описание слайда:
Двенадцатеричная система счисления Следующей после пятеричной возникла двенадцатеричная система счисления. Возникла она в древнем Шумере. Некоторые учёные полагают, что такая система возникала у них из подсчёта фаланг на руке большим пальцем. Широкое распространение получила двенадцатеричная система счисления в XIX веке. На ее широкое использование в прошлом явно указывают названия числительных во многих языках, а также сохранившиеся в ряде стран способы отсчета времени, денег и соотношения между некоторыми единицами измерения. Год состоит из 12 месяцев, а половина суток состоит из 12 часов. Элементом двенадцатеричной системы в современности может служить счёт дюжинами. Первые три степени числа 12 имеют собственные названия: 1 дюжина = 12 штук; 1 гросс = 12 дюжин = 144 штуки; 1 масса = 12 гроссов = 144 дюжины = 1728 штук. Английский фунт состоит из 12 шиллингов.

Слайд 10





Шестидесятеричная система счисления
Следующая позиционная система счисления была придумана еще в Древнем Вавилоне, причем вавилонская нумерация была шестидесятеричная, т.е. в ней использовалось шестьдесят цифр! 
В более позднее время использовалась арабами, а также древними и средневековыми астрономами. Шестидесятеричная система счисления, как считают исследователи, являет собой синтез уже вышеупомянутых пятеричной и двенадцатеричной систем.
Описание слайда:
Шестидесятеричная система счисления Следующая позиционная система счисления была придумана еще в Древнем Вавилоне, причем вавилонская нумерация была шестидесятеричная, т.е. в ней использовалось шестьдесят цифр! В более позднее время использовалась арабами, а также древними и средневековыми астрономами. Шестидесятеричная система счисления, как считают исследователи, являет собой синтез уже вышеупомянутых пятеричной и двенадцатеричной систем.

Слайд 11





Какие позиционные системы счисления используются сейчас?
В настоящее время наиболее распространены десятичная, двоичная, восьмеричная и шестнадцатеричная системы счисления. 
Двоичная, восьмеричная (в настоящее время вытесняется шестнадцатеричной) и шестнадцатеричная система часто используется в областях, связанных с цифровыми устройствами, программировании и вообще компьютерной документации.
Современные компьютерные системы оперируют информацией представленной в цифровой форме. Числовые данные преобразуются в двоичную систему счисления.
Описание слайда:
Какие позиционные системы счисления используются сейчас? В настоящее время наиболее распространены десятичная, двоичная, восьмеричная и шестнадцатеричная системы счисления. Двоичная, восьмеричная (в настоящее время вытесняется шестнадцатеричной) и шестнадцатеричная система часто используется в областях, связанных с цифровыми устройствами, программировании и вообще компьютерной документации. Современные компьютерные системы оперируют информацией представленной в цифровой форме. Числовые данные преобразуются в двоичную систему счисления.

Слайд 12





Десятичная система счисления 
Десятичная система счисления — позиционная система счисления по основанию 10.
Предполагается, что основание 10 связано с количеством пальцев рук у человека. 
Наиболее распространённая система счисления в мире. 
Для записи чисел используются символы 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, называемые арабскими цифрами.
Описание слайда:
Десятичная система счисления Десятичная система счисления — позиционная система счисления по основанию 10. Предполагается, что основание 10 связано с количеством пальцев рук у человека. Наиболее распространённая система счисления в мире. Для записи чисел используются символы 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, называемые арабскими цифрами.

Слайд 13





Двоичная система счисления 
Двоичная система счисления — позиционная система счисления с основанием 2. Используются цифры 0 и 1.
Двоичная система используется в цифровых устройствах, поскольку является наиболее простой и удовлетворяет требованиям:
Чем меньше значений существует в системе, тем проще изготовить отдельные элементы. 
Чем меньше количество состояний у элемента, тем выше помехоустойчивость и тем быстрее он может работать. 
Простота создания таблиц сложения и умножения — основных действий над числами
Описание слайда:
Двоичная система счисления Двоичная система счисления — позиционная система счисления с основанием 2. Используются цифры 0 и 1. Двоичная система используется в цифровых устройствах, поскольку является наиболее простой и удовлетворяет требованиям: Чем меньше значений существует в системе, тем проще изготовить отдельные элементы. Чем меньше количество состояний у элемента, тем выше помехоустойчивость и тем быстрее он может работать. Простота создания таблиц сложения и умножения — основных действий над числами

Слайд 14





Алфавит десятичной, двоичной, восьмеричной и шестнадцатеричной систем счисления
Описание слайда:
Алфавит десятичной, двоичной, восьмеричной и шестнадцатеричной систем счисления

Слайд 15





Соответствие десятичной, двоичной, восьмеричной и шестнадцатеричной систем счисления
Описание слайда:
Соответствие десятичной, двоичной, восьмеричной и шестнадцатеричной систем счисления

Слайд 16





Перевод чисел из одной системы счисления в другую
Чтобы перевести число из позиционной системы счисления с основанием p в десятичную, надо представить это число в виде суммы степеней p и произвести указанные вычисления в десятичной системе счисления.
Например, переведем число 10112 в десятичную систему счисления. Для этого представим это число в виде степеней двойки и произведем вычисления в десятичной системе счисления.
10112 = 1*23 + 0*22 + 1*21 + 1*20 = 1*8 + 0*4 + 1*2 + 1*1 = 8 + 0 + 2 + 1 = 1110
Рассмотрим еще один пример. Переведем число 52,748 в десятичную систему счисления.
52,748 = 5*81 + 2*80 + 3*8-1 + 4*8-2 = 5*8 + 2*1 + 7*1/8 +4*1/49 = 40 + 2 + 0,875 + 0,0625 = 42,937510
Описание слайда:
Перевод чисел из одной системы счисления в другую Чтобы перевести число из позиционной системы счисления с основанием p в десятичную, надо представить это число в виде суммы степеней p и произвести указанные вычисления в десятичной системе счисления. Например, переведем число 10112 в десятичную систему счисления. Для этого представим это число в виде степеней двойки и произведем вычисления в десятичной системе счисления. 10112 = 1*23 + 0*22 + 1*21 + 1*20 = 1*8 + 0*4 + 1*2 + 1*1 = 8 + 0 + 2 + 1 = 1110 Рассмотрим еще один пример. Переведем число 52,748 в десятичную систему счисления. 52,748 = 5*81 + 2*80 + 3*8-1 + 4*8-2 = 5*8 + 2*1 + 7*1/8 +4*1/49 = 40 + 2 + 0,875 + 0,0625 = 42,937510

Слайд 17





Перевод чисел из одной системы счисления в другую
Перевод из десятичной системы счисления в систему счисления с основанием p осуществляется последовательным делением десятичного числа и его десятичных частных на p, а затем выписыванием последнего частного и остатков в обратном порядке.
Переведем десятичное число 2010 в двоичную систем счисления (основание системы счисления p=2). В итоге получили 2010 = 101002.
Описание слайда:
Перевод чисел из одной системы счисления в другую Перевод из десятичной системы счисления в систему счисления с основанием p осуществляется последовательным делением десятичного числа и его десятичных частных на p, а затем выписыванием последнего частного и остатков в обратном порядке. Переведем десятичное число 2010 в двоичную систем счисления (основание системы счисления p=2). В итоге получили 2010 = 101002.

Слайд 18





Числа в компьютере
Числа в компьютере хранятся и обрабатываются в двоичной системе счисления. Последовательность нулей и единиц называют двоичным кодом.
Специфической особенности представления чисел в памяти компьютера рассмотрим на других уроках по теме «системы счисления».
Описание слайда:
Числа в компьютере Числа в компьютере хранятся и обрабатываются в двоичной системе счисления. Последовательность нулей и единиц называют двоичным кодом. Специфической особенности представления чисел в памяти компьютера рассмотрим на других уроках по теме «системы счисления».

Слайд 19





Вопросы:
Что такое система счисления?
Какие два вида систем счисления вы знаете?
Что такое основание системы счисления? Что такое алфавит системы счисления? Примеры.
В какой системе счисления хранятся и обрабатываются числа в памяти компьютера?
Описание слайда:
Вопросы: Что такое система счисления? Какие два вида систем счисления вы знаете? Что такое основание системы счисления? Что такое алфавит системы счисления? Примеры. В какой системе счисления хранятся и обрабатываются числа в памяти компьютера?



Похожие презентации
Mypresentation.ru
Загрузить презентацию