🗊Химический элемент побочной подгруппы 1 группы – Cu (Медь) Работу выполнили: ученики 11 класса Арабосинской СОШ Иванов Константин

Категория: Химия
Нажмите для полного просмотра!
Химический элемент побочной подгруппы 1 группы – Cu (Медь)  Работу выполнили: ученики 11 класса   Арабосинской СОШ Иванов Константин  , слайд №1Химический элемент побочной подгруппы 1 группы – Cu (Медь)  Работу выполнили: ученики 11 класса   Арабосинской СОШ Иванов Константин  , слайд №2Химический элемент побочной подгруппы 1 группы – Cu (Медь)  Работу выполнили: ученики 11 класса   Арабосинской СОШ Иванов Константин  , слайд №3Химический элемент побочной подгруппы 1 группы – Cu (Медь)  Работу выполнили: ученики 11 класса   Арабосинской СОШ Иванов Константин  , слайд №4Химический элемент побочной подгруппы 1 группы – Cu (Медь)  Работу выполнили: ученики 11 класса   Арабосинской СОШ Иванов Константин  , слайд №5Химический элемент побочной подгруппы 1 группы – Cu (Медь)  Работу выполнили: ученики 11 класса   Арабосинской СОШ Иванов Константин  , слайд №6Химический элемент побочной подгруппы 1 группы – Cu (Медь)  Работу выполнили: ученики 11 класса   Арабосинской СОШ Иванов Константин  , слайд №7

Вы можете ознакомиться и скачать Химический элемент побочной подгруппы 1 группы – Cu (Медь) Работу выполнили: ученики 11 класса Арабосинской СОШ Иванов Константин . Презентация содержит 7 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Химический элемент побочной подгруппы 1 группы – Cu (Медь)
Работу выполнили: ученики 11 класса 
Арабосинской СОШ Иванов Константин
И Гаврилов Сергей.
 Работу приняла: учитель биологии и химии 
Арабосинской СОШ Иванова Надежда Васильевна
Описание слайда:
Химический элемент побочной подгруппы 1 группы – Cu (Медь) Работу выполнили: ученики 11 класса Арабосинской СОШ Иванов Константин И Гаврилов Сергей. Работу приняла: учитель биологии и химии Арабосинской СОШ Иванова Надежда Васильевна

Слайд 2






  МЕДЬ (лат. Cuprum), Cu (читается «купрум»), химический элемент с  атомным номером 29, атомная масса 63,546. Латинское название меди происходит от названия острова Кипра (Cuprus), где в древности добывали медную руду; однозначного объяснения происхождения этого слова в русском языке нет. Простое вещество медь — красивый розовато-красный пластичный металл.
Описание слайда:
МЕДЬ (лат. Cuprum), Cu (читается «купрум»), химический элемент с атомным номером 29, атомная масса 63,546. Латинское название меди происходит от названия острова Кипра (Cuprus), где в древности добывали медную руду; однозначного объяснения происхождения этого слова в русском языке нет. Простое вещество медь — красивый розовато-красный пластичный металл.

Слайд 3






      В периодической системе Менделеева медь расположена в четвертом периоде и входит в группу IВ, к которой относятся такие благородные металлы, как серебро и золото.
Описание слайда:
В периодической системе Менделеева медь расположена в четвертом периоде и входит в группу IВ, к которой относятся такие благородные металлы, как серебро и золото.

Слайд 4





Нахождение в природе

В земной коре содержание меди составляет около 5·10-3  % по массе. Очень редко медь встречается в самородном виде (самый крупный самородок в 420 тонн найден в Северной Америке). Различных руд меди много, а вот богатых месторождений на земном шаре мало, к тому же медные руды добывают уже многие сотни лет, так что некоторые месторождения полностью исчерпаны. В морской воде содержится примерно 1·10-8 % меди.
Описание слайда:
Нахождение в природе В земной коре содержание меди составляет около 5·10-3 % по массе. Очень редко медь встречается в самородном виде (самый крупный самородок в 420 тонн найден в Северной Америке). Различных руд меди много, а вот богатых месторождений на земном шаре мало, к тому же медные руды добывают уже многие сотни лет, так что некоторые месторождения полностью исчерпаны. В морской воде содержится примерно 1·10-8 % меди.

Слайд 5





Физические и химические свойства


Кристаллическая решетка металлической меди кубическая гранецентрированная, параметр решетки  а = 0,36150 нм. Плотность 8,92 г/см3, температура плавления 1083,4 °C, температура кипения 2567 °C. Медь среди всех других металлов обладает одной из самых высоких теплопроводностей и одним из самых низких электрических сопротивлений (при 20 °C удельное сопротивление 1,68·10-3 Ом·м).
При нагревании на воздухе медь тускнеет и в конце концов чернеет из-за образования на поверхности оксидного слоя. Сначала образуется оксид Cu2O, затем — оксид CuO.
Описание слайда:
Физические и химические свойства Кристаллическая решетка металлической меди кубическая гранецентрированная, параметр решетки а = 0,36150 нм. Плотность 8,92 г/см3, температура плавления 1083,4 °C, температура кипения 2567 °C. Медь среди всех других металлов обладает одной из самых высоких теплопроводностей и одним из самых низких электрических сопротивлений (при 20 °C удельное сопротивление 1,68·10-3 Ом·м). При нагревании на воздухе медь тускнеет и в конце концов чернеет из-за образования на поверхности оксидного слоя. Сначала образуется оксид Cu2O, затем — оксид CuO.

Слайд 6























Применение

Медь, как полагают, — первый металл, который человек научился обрабатывать и использовать для своих нужд. Найденные в верховьях реки Тигр изделия из меди датируются десятым тысячелетием до нашей эры. Позднее широкое применение сплавов меди определило материальную культуру бронзового века (конец 4 — начало 1 тысячелетия до нашей эры) и в дальнейшем сопровождало развитие цивилизации на всех этапах. Медь и ее использовались для изготовления посуды, утвари, украшений, различных художественных изделий. Особенно велика была роль бронзы.
С 20 века главное применение меди обусловлено ее высокой электропроводимостью. Более половины добываемой меди используется в электротехнике для изготовления различных проводов, кабелей, токопроводящих частей электротехнической аппаратуры. Из-за высокой теплопроводности медь — незаменимый материал различных теплообменников и холодильной аппаратуры. Широко применяется медь в гальванотехнике — для нанесения медных покрытий, для получения тонкостенных изделий сложной формы, для изготовления клише в полиграфии и др.
Описание слайда:
Применение Медь, как полагают, — первый металл, который человек научился обрабатывать и использовать для своих нужд. Найденные в верховьях реки Тигр изделия из меди датируются десятым тысячелетием до нашей эры. Позднее широкое применение сплавов меди определило материальную культуру бронзового века (конец 4 — начало 1 тысячелетия до нашей эры) и в дальнейшем сопровождало развитие цивилизации на всех этапах. Медь и ее использовались для изготовления посуды, утвари, украшений, различных художественных изделий. Особенно велика была роль бронзы. С 20 века главное применение меди обусловлено ее высокой электропроводимостью. Более половины добываемой меди используется в электротехнике для изготовления различных проводов, кабелей, токопроводящих частей электротехнической аппаратуры. Из-за высокой теплопроводности медь — незаменимый материал различных теплообменников и холодильной аппаратуры. Широко применяется медь в гальванотехнике — для нанесения медных покрытий, для получения тонкостенных изделий сложной формы, для изготовления клише в полиграфии и др.

Слайд 7







Биологическая роль

Медь присутствует во всех организмах и принадлежит к числу микроэлементов, необходимых для их нормального развития В растениях и животных содержание меди варьируется от 10-15 до 10-3 %. Мышечная ткань человека содержит 1·10-3 % меди, костная ткань — (1-26) ·10-4%, в крови присутствует 1,01 мг/л меди. Всего в организме среднего человека (масса тела 70 кг) содержится 72 мг меди. Основная роль меди в тканях растений и животных — участие в ферментативном катализе. Медь служит активатором ряда реакций и входит в состав медьсодержащих ферментов, прежде всего оксидаз, катализирующих реакции биологического окисления. Сульфат меди и другие соединения меди используют в сельском хозяйстве в качестве микроудобрений и для борьбы с различными вредителями растений. Однако при использовании соединений меди, при работах с ними нужно учитывать, что они ядовиты. Попадание солей меди в организм приводит к различным заболеваниям человека. ПДК для аэрозолей меди составляет 1 мг/м3, для питьевой воды содержание меди должно быть не выше 1,0 мг/л.
Описание слайда:
Биологическая роль Медь присутствует во всех организмах и принадлежит к числу микроэлементов, необходимых для их нормального развития В растениях и животных содержание меди варьируется от 10-15 до 10-3 %. Мышечная ткань человека содержит 1·10-3 % меди, костная ткань — (1-26) ·10-4%, в крови присутствует 1,01 мг/л меди. Всего в организме среднего человека (масса тела 70 кг) содержится 72 мг меди. Основная роль меди в тканях растений и животных — участие в ферментативном катализе. Медь служит активатором ряда реакций и входит в состав медьсодержащих ферментов, прежде всего оксидаз, катализирующих реакции биологического окисления. Сульфат меди и другие соединения меди используют в сельском хозяйстве в качестве микроудобрений и для борьбы с различными вредителями растений. Однако при использовании соединений меди, при работах с ними нужно учитывать, что они ядовиты. Попадание солей меди в организм приводит к различным заболеваниям человека. ПДК для аэрозолей меди составляет 1 мг/м3, для питьевой воды содержание меди должно быть не выше 1,0 мг/л.



Похожие презентации
Mypresentation.ru
Загрузить презентацию