🗊Презентация Современная логика. Решение парадоксов

Категория: Философия
Нажмите для полного просмотра!
Современная логика. Решение парадоксов, слайд №1Современная логика. Решение парадоксов, слайд №2Современная логика. Решение парадоксов, слайд №3Современная логика. Решение парадоксов, слайд №4Современная логика. Решение парадоксов, слайд №5Современная логика. Решение парадоксов, слайд №6Современная логика. Решение парадоксов, слайд №7Современная логика. Решение парадоксов, слайд №8

Вы можете ознакомиться и скачать презентацию на тему Современная логика. Решение парадоксов. Доклад-сообщение содержит 8 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Современная логика: решение парадоксов
Описание слайда:
Современная логика: решение парадоксов

Слайд 2





Парадокс сорита (кучи)
Одна песчинка – не куча.
Если одна песчинка – не куча, то и две – не куча.
Если две – не куча, то и три не куча.
….
Если 99 999 песчинок – не куча, то и 100 000 – не куча.
Следовательно, 100 000 песчинок – не куча песка.
Но этот вывод очевидно не верен. 
Что же пошло не так?
Описание слайда:
Парадокс сорита (кучи) Одна песчинка – не куча. Если одна песчинка – не куча, то и две – не куча. Если две – не куча, то и три не куча. …. Если 99 999 песчинок – не куча, то и 100 000 – не куча. Следовательно, 100 000 песчинок – не куча песка. Но этот вывод очевидно не верен. Что же пошло не так?

Слайд 3





Выходы из Парадокса сорита 
Настаивать, что существует момент, когда добавление одной песчинки меняет ситуацию, что есть точное количество песчинок, после которого куча становится кучей.
Создание кучи не ограничивается серией добавлений по одной песчинки. Нет определённой точки перехода не кучи в кучу.
Описание слайда:
Выходы из Парадокса сорита Настаивать, что существует момент, когда добавление одной песчинки меняет ситуацию, что есть точное количество песчинок, после которого куча становится кучей. Создание кучи не ограничивается серией добавлений по одной песчинки. Нет определённой точки перехода не кучи в кучу.

Слайд 4





Парадоксы Рассела (Теория дескрипций) 
Информативное утверждение идентичности.
Если А и В идентичны, то любое свойство А также является свойством В, и А может заменить В в любом предложении.
Пример: Катя хочет узнать, является ли А. С. Пушкин автором «Евгения Онегина». Поскольку Пушкин действительно автор «Евгения Онегина», замена приводит к тому, что Катя пытается узнать, действительно ли Пушкин – Пушкин
Описание слайда:
Парадоксы Рассела (Теория дескрипций) Информативное утверждение идентичности. Если А и В идентичны, то любое свойство А также является свойством В, и А может заменить В в любом предложении. Пример: Катя хочет узнать, является ли А. С. Пушкин автором «Евгения Онегина». Поскольку Пушкин действительно автор «Евгения Онегина», замена приводит к тому, что Катя пытается узнать, действительно ли Пушкин – Пушкин

Слайд 5





Парадоксы Рассела (Теория дескрипций) 
Сохранение законов логики.
По закону исключённого 3ьего, «если А есть В» ложно, то «В не есть А» истинно.
То есть если утверждение «король Франции лыс» ложно, то «король Франции не лыс» должно быть истинно. Но это не так!
Описание слайда:
Парадоксы Рассела (Теория дескрипций) Сохранение законов логики. По закону исключённого 3ьего, «если А есть В» ложно, то «В не есть А» истинно. То есть если утверждение «король Франции лыс» ложно, то «король Франции не лыс» должно быть истинно. Но это не так!

Слайд 6





Решение Парадоксов: подход Рассела 
Определять правдивость утверждения должна логическая структура.
Рассел отбросил модель «субъекта-предиката» (Ф есть Ж) и предложил такую модель:
Утверждение «Ф есть Ж» может быть разделено на 3 отдельных утверждения: «существует Ф», «существует только одно Ф», «если нечто является  Ф, то оно является Ж».
Описание слайда:
Решение Парадоксов: подход Рассела Определять правдивость утверждения должна логическая структура. Рассел отбросил модель «субъекта-предиката» (Ф есть Ж) и предложил такую модель: Утверждение «Ф есть Ж» может быть разделено на 3 отдельных утверждения: «существует Ф», «существует только одно Ф», «если нечто является Ф, то оно является Ж».

Слайд 7





Решение Парадоксов: подход Рассела 
Утверждение «Нынешний король Франции лыс» превращается в «есть сущность, являющаяся королём Франции в данный момент, и такая сущность только одна, и эта сущность - лысая». 
Утверждение ложно, но не потому, что король Франции не лыс, а потому, что «не существует сущности, являющейся королём Франции».
Описание слайда:
Решение Парадоксов: подход Рассела Утверждение «Нынешний король Франции лыс» превращается в «есть сущность, являющаяся королём Франции в данный момент, и такая сущность только одна, и эта сущность - лысая». Утверждение ложно, но не потому, что король Франции не лыс, а потому, что «не существует сущности, являющейся королём Франции».

Слайд 8





Решение Парадоксов: подход Рассела 
Утверждение «Пушкин – автор «Онегина»» раскладывается на:
«есть сущность, и только одна сущность, являющаяся автором «Онегина»», и эта сущность – Пушкин.
Описание слайда:
Решение Парадоксов: подход Рассела Утверждение «Пушкин – автор «Онегина»» раскладывается на: «есть сущность, и только одна сущность, являющаяся автором «Онегина»», и эта сущность – Пушкин.



Похожие презентации
Mypresentation.ru
Загрузить презентацию