🗊Презентация Парадокс дней рождения

Категория: Математика
Нажмите для полного просмотра!
Парадокс дней рождения, слайд №1Парадокс дней рождения, слайд №2Парадокс дней рождения, слайд №3Парадокс дней рождения, слайд №4Парадокс дней рождения, слайд №5Парадокс дней рождения, слайд №6Парадокс дней рождения, слайд №7Парадокс дней рождения, слайд №8Парадокс дней рождения, слайд №9Парадокс дней рождения, слайд №10Парадокс дней рождения, слайд №11Парадокс дней рождения, слайд №12Парадокс дней рождения, слайд №13

Вы можете ознакомиться и скачать презентацию на тему Парадокс дней рождения. Доклад-сообщение содержит 13 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Парадокс дней
 рождения

Выполнил:
Кочетов
Андрей Михайлович
студент группы 2КСК
Описание слайда:
Парадокс дней рождения Выполнил: Кочетов Андрей Михайлович студент группы 2КСК

Слайд 2





Что это такое?
Парадо́кс дней рожде́ния — утверждение, гласящее, что в группе, состоящей из 23 или более человек, вероятность совпадения дней рождения (число и месяц) хотя бы у двух людей превышает 50 %. Например, если в классе 23 ученика или более, то более вероятно то, что у кого-то из одноклассников дни рождения придутся на один день, чем то, что у каждого будет свой неповторимый день рождения.
     Для 60 и более человек вероятность такого совпадения превышает 99 %, хотя 100 % она достигает, согласно принципу Дирихле, только тогда, когда в группе не менее 367 человек (ровно на 1 больше, чем число дней в високосном году; с учётом високосных лет).
Описание слайда:
Что это такое? Парадо́кс дней рожде́ния — утверждение, гласящее, что в группе, состоящей из 23 или более человек, вероятность совпадения дней рождения (число и месяц) хотя бы у двух людей превышает 50 %. Например, если в классе 23 ученика или более, то более вероятно то, что у кого-то из одноклассников дни рождения придутся на один день, чем то, что у каждого будет свой неповторимый день рождения. Для 60 и более человек вероятность такого совпадения превышает 99 %, хотя 100 % она достигает, согласно принципу Дирихле, только тогда, когда в группе не менее 367 человек (ровно на 1 больше, чем число дней в високосном году; с учётом високосных лет).

Слайд 3





Ключевым моментом здесь является то, что утверждение парадокса дней рождения говорит именно о совпадении дней рождения у каких-либо двух членов группы. 
Ключевым моментом здесь является то, что утверждение парадокса дней рождения говорит именно о совпадении дней рождения у каких-либо двух членов группы. 
     Одно из распространённых заблуждений состоит в том, что этот случай путают с другим — похожим, на первый взгляд, — случаем, когда из группы выбирается один человек и оценивается вероятность того, что у кого-либо из других членов группы день рождения совпадёт с днем рождения выбранного человека. В последнем случае вероятность совпадения значительно ниже.
Описание слайда:
Ключевым моментом здесь является то, что утверждение парадокса дней рождения говорит именно о совпадении дней рождения у каких-либо двух членов группы. Ключевым моментом здесь является то, что утверждение парадокса дней рождения говорит именно о совпадении дней рождения у каких-либо двух членов группы. Одно из распространённых заблуждений состоит в том, что этот случай путают с другим — похожим, на первый взгляд, — случаем, когда из группы выбирается один человек и оценивается вероятность того, что у кого-либо из других членов группы день рождения совпадёт с днем рождения выбранного человека. В последнем случае вероятность совпадения значительно ниже.

Слайд 4





Расчёт вероятности 

      Рассчитаем сначала, какова вероятность p (n) того, что в группе из n человек дни рождения всех людей будут различными. Если n > 365, то в силу принципа Дирихле вероятность равна нулю. Если же n ≤ 365, то будем рассуждать следующим образом. Возьмём наугад одного человека из группы и запомним его день рождения. Затем возьмём наугад второго человека, при этом вероятность того, что у него день рождения не совпадёт с днем рождения первого человека, равна 1 — 1/365. Затем возьмём третьего человека, при этом вероятность того, что его день рождения не совпадёт с днями рождения первых двух, равна 1 — 2/365. Рассуждая по аналогии, мы дойдём до последнего человека, для которого вероятность несовпадения его дня рождения со всеми предыдущими будет равна 1 — (n — 1)/365. Перемножая все эти вероятности, получаем вероятность того, что все дни рождения в группе будут различными:
Описание слайда:
Расчёт вероятности  Рассчитаем сначала, какова вероятность p (n) того, что в группе из n человек дни рождения всех людей будут различными. Если n > 365, то в силу принципа Дирихле вероятность равна нулю. Если же n ≤ 365, то будем рассуждать следующим образом. Возьмём наугад одного человека из группы и запомним его день рождения. Затем возьмём наугад второго человека, при этом вероятность того, что у него день рождения не совпадёт с днем рождения первого человека, равна 1 — 1/365. Затем возьмём третьего человека, при этом вероятность того, что его день рождения не совпадёт с днями рождения первых двух, равна 1 — 2/365. Рассуждая по аналогии, мы дойдём до последнего человека, для которого вероятность несовпадения его дня рождения со всеми предыдущими будет равна 1 — (n — 1)/365. Перемножая все эти вероятности, получаем вероятность того, что все дни рождения в группе будут различными:

Слайд 5





    Тогда вероятность того, что хотя бы у двух человек из n дни рождения совпадут, равна:
    Тогда вероятность того, что хотя бы у двух человек из n дни рождения совпадут, равна:
Описание слайда:
Тогда вероятность того, что хотя бы у двух человек из n дни рождения совпадут, равна: Тогда вероятность того, что хотя бы у двух человек из n дни рождения совпадут, равна:

Слайд 6


Парадокс дней рождения, слайд №6
Описание слайда:

Слайд 7





Альтернативный метод

     Вероятность совпадения дней рождения в группе можно также рассчитать с использованием формул комбинаторики. Представим, что каждый день года — это одна буква в алфавите, и алфавит состоит из 365 букв. Дни рождения n человек могут быть представлены строкой, состоящей из n букв такого алфавита. Общее число таких строк равно:
Описание слайда:
Альтернативный метод Вероятность совпадения дней рождения в группе можно также рассчитать с использованием формул комбинаторики. Представим, что каждый день года — это одна буква в алфавите, и алфавит состоит из 365 букв. Дни рождения n человек могут быть представлены строкой, состоящей из n букв такого алфавита. Общее число таких строк равно:

Слайд 8





     Если строки выбираются случайно (с равномерным распределением), вероятность выбора строки, в которой хотя бы две буквы совпадут, равна
     Если строки выбираются случайно (с равномерным распределением), вероятность выбора строки, в которой хотя бы две буквы совпадут, равна
Описание слайда:
Если строки выбираются случайно (с равномерным распределением), вероятность выбора строки, в которой хотя бы две буквы совпадут, равна Если строки выбираются случайно (с равномерным распределением), вероятность выбора строки, в которой хотя бы две буквы совпадут, равна

Слайд 9





Родившиеся в один день с заданным человеком

     Сравним вероятность p(n) с вероятностью того, что в группе из n человек день рождения какого-либо человека из группы совпадёт с днём рождения некоторого заранее выбранного человека, не принадлежащего группе. Эта вероятность равна:
Описание слайда:
Родившиеся в один день с заданным человеком Сравним вероятность p(n) с вероятностью того, что в группе из n человек день рождения какого-либо человека из группы совпадёт с днём рождения некоторого заранее выбранного человека, не принадлежащего группе. Эта вероятность равна:

Слайд 10





Сравнение графиков функций : p(n) и q(n).
Описание слайда:
Сравнение графиков функций : p(n) и q(n).

Слайд 11





Несколько типов людей

      Выше парадокс дней рождения был представлен для одного «типа» людей. Можно обобщить задачу, введя несколько «типов», например, разделив людей на мужчин (m) и женщин (n). Подсчитаем вероятность того, что хотя бы у одной женщины и у одного мужчины совпадают дни рождения (совпадение дней рождения у двух женщин или у двух мужчин не учитываются):
Описание слайда:
Несколько типов людей Выше парадокс дней рождения был представлен для одного «типа» людей. Можно обобщить задачу, введя несколько «типов», например, разделив людей на мужчин (m) и женщин (n). Подсчитаем вероятность того, что хотя бы у одной женщины и у одного мужчины совпадают дни рождения (совпадение дней рождения у двух женщин или у двух мужчин не учитываются):

Слайд 12





Близкие дни рождения
Описание слайда:
Близкие дни рождения

Слайд 13





Спасибо за внимание !!!
Описание слайда:
Спасибо за внимание !!!



Похожие презентации
Mypresentation.ru
Загрузить презентацию