🗊Презентация Высказывания и высказывательные формы

Категория: Русский язык
Нажмите для полного просмотра!
Высказывания и высказывательные формы, слайд №1Высказывания и высказывательные формы, слайд №2Высказывания и высказывательные формы, слайд №3Высказывания и высказывательные формы, слайд №4Высказывания и высказывательные формы, слайд №5Высказывания и высказывательные формы, слайд №6Высказывания и высказывательные формы, слайд №7Высказывания и высказывательные формы, слайд №8Высказывания и высказывательные формы, слайд №9Высказывания и высказывательные формы, слайд №10Высказывания и высказывательные формы, слайд №11

Вы можете ознакомиться и скачать презентацию на тему Высказывания и высказывательные формы. Доклад-сообщение содержит 11 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Высказывания и высказывательные формы
Описание слайда:
Высказывания и высказывательные формы

Слайд 2


Высказывания и высказывательные формы, слайд №2
Описание слайда:

Слайд 3


Высказывания и высказывательные формы, слайд №3
Описание слайда:

Слайд 4





		Употребляемые в обычной речи слова и словосочетания "не",   "и",   "или",  "если... , то",   "тогда и только тогда" и другие позволяют из уже заданных высказываний строить новые высказывания. Такие слова и словосочетания называются   логическими связками.
		Употребляемые в обычной речи слова и словосочетания "не",   "и",   "или",  "если... , то",   "тогда и только тогда" и другие позволяют из уже заданных высказываний строить новые высказывания. Такие слова и словосочетания называются   логическими связками.
		Bысказывания, образованные из других высказываний с помощью логических связок, называются   составными. Высказывания, не являющиеся составными, называются  элементарными.
		Так, например, из элементарных высказываний "Петров — врач", "Петров — шахматист" при помощи связки "и" можно получить составное высказывание "Петров — врач и шахматист", понимаемое как "Петров — врач, хорошо играющий в шахматы".
		При помощи связки "или" из этих же высказываний можно получить составное высказывание "Петров — врач или шахматист", понимаемое в алгебре логики как "Петров или врач, или шахматист, или и врач и шахматист одновременно".
		Истинность или ложность получаемых таким образом составных высказываний зависит от истинности или ложности элементарных высказываний.
Описание слайда:
Употребляемые в обычной речи слова и словосочетания "не",   "и",   "или",  "если... , то",   "тогда и только тогда" и другие позволяют из уже заданных высказываний строить новые высказывания. Такие слова и словосочетания называются   логическими связками. Употребляемые в обычной речи слова и словосочетания "не",   "и",   "или",  "если... , то",   "тогда и только тогда" и другие позволяют из уже заданных высказываний строить новые высказывания. Такие слова и словосочетания называются   логическими связками. Bысказывания, образованные из других высказываний с помощью логических связок, называются   составными. Высказывания, не являющиеся составными, называются  элементарными. Так, например, из элементарных высказываний "Петров — врач", "Петров — шахматист" при помощи связки "и" можно получить составное высказывание "Петров — врач и шахматист", понимаемое как "Петров — врач, хорошо играющий в шахматы". При помощи связки "или" из этих же высказываний можно получить составное высказывание "Петров — врач или шахматист", понимаемое в алгебре логики как "Петров или врач, или шахматист, или и врач и шахматист одновременно". Истинность или ложность получаемых таким образом составных высказываний зависит от истинности или ложности элементарных высказываний.

Слайд 5





		Каждая логическая связка рассматривается как операция над логическими высказываниями и имеет свое название и обозначение:
		Каждая логическая связка рассматривается как операция над логическими высказываниями и имеет свое название и обозначение:
НЕ
И
ИЛИ
 ЕСЛИ-ТО
 РАВНОСИЛЬНО
Описание слайда:
Каждая логическая связка рассматривается как операция над логическими высказываниями и имеет свое название и обозначение: Каждая логическая связка рассматривается как операция над логическими высказываниями и имеет свое название и обозначение: НЕ И ИЛИ ЕСЛИ-ТО РАВНОСИЛЬНО

Слайд 6





 		НЕ    Операция, выражаемая словом "не", называется отрицанием и обозначается чертой над высказыванием (или знаком ).   Высказывание истинно, когда A ложно, и ложно, когда A истинно.   Пример. "Луна — спутник Земли" (А); "Луна — не спутник Земли" (А).
 		НЕ    Операция, выражаемая словом "не", называется отрицанием и обозначается чертой над высказыванием (или знаком ).   Высказывание истинно, когда A ложно, и ложно, когда A истинно.   Пример. "Луна — спутник Земли" (А); "Луна — не спутник Земли" (А).
Описание слайда:
НЕ    Операция, выражаемая словом "не", называется отрицанием и обозначается чертой над высказыванием (или знаком ).   Высказывание истинно, когда A ложно, и ложно, когда A истинно.   Пример. "Луна — спутник Земли" (А); "Луна — не спутник Земли" (А). НЕ    Операция, выражаемая словом "не", называется отрицанием и обозначается чертой над высказыванием (или знаком ).   Высказывание истинно, когда A ложно, и ложно, когда A истинно.   Пример. "Луна — спутник Земли" (А); "Луна — не спутник Земли" (А).

Слайд 7





  		И    Операция, выражаемая связкой "и", называется конъюнкцией (лат. conjunctio — соединение) или логическим умножением. Высказывание А ∧ В истинно тогда и только тогда, когда оба высказывания А и В истинны. Например, высказывание   "10 делится на 2 и 5 больше 3"   истинно, а высказывания     
  		И    Операция, выражаемая связкой "и", называется конъюнкцией (лат. conjunctio — соединение) или логическим умножением. Высказывание А ∧ В истинно тогда и только тогда, когда оба высказывания А и В истинны. Например, высказывание   "10 делится на 2 и 5 больше 3"   истинно, а высказывания     
"10 делится на 2 и 5 не больше 3",     
"10 не делится на 2 и 5 больше 3",    
 "10 не делится на 2 и 5 не больше 3"     —   ложны.
Описание слайда:
И    Операция, выражаемая связкой "и", называется конъюнкцией (лат. conjunctio — соединение) или логическим умножением. Высказывание А ∧ В истинно тогда и только тогда, когда оба высказывания А и В истинны. Например, высказывание   "10 делится на 2 и 5 больше 3"   истинно, а высказывания      И    Операция, выражаемая связкой "и", называется конъюнкцией (лат. conjunctio — соединение) или логическим умножением. Высказывание А ∧ В истинно тогда и только тогда, когда оба высказывания А и В истинны. Например, высказывание   "10 делится на 2 и 5 больше 3"   истинно, а высказывания      "10 делится на 2 и 5 не больше 3",     "10 не делится на 2 и 5 больше 3",     "10 не делится на 2 и 5 не больше 3"     —   ложны.

Слайд 8





		ИЛИ    Операция, выражаемая связкой ”или” ,называется дизъюнкцией (лат. disjunctio — разделение) или логическим сложением и обозначается знаком v (или плюсом). Высказывание А v В ложно тогда и только тогда, когда оба высказывания А и В ложны.   Например, высказывание   "10 не делится на 2 или 5 не больше 3"   ложно,     а высказывания "10 делится на 2 или 5 больше 3",   "10 делится на 2 или 5 не больше 3",   "10 не делится на 2 или 5 больше 3"     —   истинны.
		ИЛИ    Операция, выражаемая связкой ”или” ,называется дизъюнкцией (лат. disjunctio — разделение) или логическим сложением и обозначается знаком v (или плюсом). Высказывание А v В ложно тогда и только тогда, когда оба высказывания А и В ложны.   Например, высказывание   "10 не делится на 2 или 5 не больше 3"   ложно,     а высказывания "10 делится на 2 или 5 больше 3",   "10 делится на 2 или 5 не больше 3",   "10 не делится на 2 или 5 больше 3"     —   истинны.
Описание слайда:
ИЛИ    Операция, выражаемая связкой ”или” ,называется дизъюнкцией (лат. disjunctio — разделение) или логическим сложением и обозначается знаком v (или плюсом). Высказывание А v В ложно тогда и только тогда, когда оба высказывания А и В ложны.   Например, высказывание   "10 не делится на 2 или 5 не больше 3"   ложно,     а высказывания "10 делится на 2 или 5 больше 3",   "10 делится на 2 или 5 не больше 3",   "10 не делится на 2 или 5 больше 3"     —   истинны. ИЛИ    Операция, выражаемая связкой ”или” ,называется дизъюнкцией (лат. disjunctio — разделение) или логическим сложением и обозначается знаком v (или плюсом). Высказывание А v В ложно тогда и только тогда, когда оба высказывания А и В ложны.   Например, высказывание   "10 не делится на 2 или 5 не больше 3"   ложно,     а высказывания "10 делится на 2 или 5 больше 3",   "10 делится на 2 или 5 не больше 3",   "10 не делится на 2 или 5 больше 3"     —   истинны.

Слайд 9


Высказывания и высказывательные формы, слайд №9
Описание слайда:

Слайд 10





		РАВНОСИЛЬНО   Операция, выражаемая связками "тогда и только тогда", "необходимо и достаточно", "... равносильно ...", называется эквиваленцией или двойной импликацией. Высказывание  истинно тогда и только тогда, когда значения А и В совпадают.       Например, высказывания    "24 делится на 6 тогда и только тогда, когда 24 делится на 3",    "23 делится на 6 тогда и только тогда, когда 23 делится на 3"   истинны,   а высказывания   "24 делится на 6 тогда и только тогда, когда 24 делится на 5",   "21 делится на 6 тогда и только тогда, когда 21 делится на 3"   ложны.
		РАВНОСИЛЬНО   Операция, выражаемая связками "тогда и только тогда", "необходимо и достаточно", "... равносильно ...", называется эквиваленцией или двойной импликацией. Высказывание  истинно тогда и только тогда, когда значения А и В совпадают.       Например, высказывания    "24 делится на 6 тогда и только тогда, когда 24 делится на 3",    "23 делится на 6 тогда и только тогда, когда 23 делится на 3"   истинны,   а высказывания   "24 делится на 6 тогда и только тогда, когда 24 делится на 5",   "21 делится на 6 тогда и только тогда, когда 21 делится на 3"   ложны.
Описание слайда:
РАВНОСИЛЬНО   Операция, выражаемая связками "тогда и только тогда", "необходимо и достаточно", "... равносильно ...", называется эквиваленцией или двойной импликацией. Высказывание  истинно тогда и только тогда, когда значения А и В совпадают.       Например, высказывания    "24 делится на 6 тогда и только тогда, когда 24 делится на 3",    "23 делится на 6 тогда и только тогда, когда 23 делится на 3"   истинны,   а высказывания   "24 делится на 6 тогда и только тогда, когда 24 делится на 5",   "21 делится на 6 тогда и только тогда, когда 21 делится на 3"   ложны. РАВНОСИЛЬНО   Операция, выражаемая связками "тогда и только тогда", "необходимо и достаточно", "... равносильно ...", называется эквиваленцией или двойной импликацией. Высказывание  истинно тогда и только тогда, когда значения А и В совпадают.       Например, высказывания    "24 делится на 6 тогда и только тогда, когда 24 делится на 3",    "23 делится на 6 тогда и только тогда, когда 23 делится на 3"   истинны,   а высказывания   "24 делится на 6 тогда и только тогда, когда 24 делится на 5",   "21 делится на 6 тогда и только тогда, когда 21 делится на 3"   ложны.

Слайд 11


Высказывания и высказывательные формы, слайд №11
Описание слайда:



Похожие презентации
Mypresentation.ru
Загрузить презентацию