🗊КОМПЛЕКСНЫЕ ЧИСЛА

Категория: Математика
Нажмите для полного просмотра!
КОМПЛЕКСНЫЕ ЧИСЛА, слайд №1КОМПЛЕКСНЫЕ ЧИСЛА, слайд №2КОМПЛЕКСНЫЕ ЧИСЛА, слайд №3КОМПЛЕКСНЫЕ ЧИСЛА, слайд №4КОМПЛЕКСНЫЕ ЧИСЛА, слайд №5КОМПЛЕКСНЫЕ ЧИСЛА, слайд №6КОМПЛЕКСНЫЕ ЧИСЛА, слайд №7КОМПЛЕКСНЫЕ ЧИСЛА, слайд №8

Вы можете ознакомиться и скачать КОМПЛЕКСНЫЕ ЧИСЛА. Презентация содержит 8 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





КОМПЛЕКСНЫЕ ЧИСЛА
Описание слайда:
КОМПЛЕКСНЫЕ ЧИСЛА

Слайд 2





N C  Z C Q C R C C
N- ”natural”     R- “real”    C - “complex”     Z – исключительная роль нуля  “zero”
Q – “quotient” отношение ( т.к. рациональные числа – m/n)
Описание слайда:
N C Z C Q C R C C N- ”natural” R- “real” C - “complex” Z – исключительная роль нуля “zero” Q – “quotient” отношение ( т.к. рациональные числа – m/n)

Слайд 3





Минимальные условия комплексного числа
1) Существует число, квадрат которого = -1.
2) Множество комплексных чисел содержит все действительные числа.
3) Операции сложения, вычитания, умножения и деления комплексных чисел удовлетворяет обычным законом арифметических действий.
Описание слайда:
Минимальные условия комплексного числа 1) Существует число, квадрат которого = -1. 2) Множество комплексных чисел содержит все действительные числа. 3) Операции сложения, вычитания, умножения и деления комплексных чисел удовлетворяет обычным законом арифметических действий.

Слайд 4





Элемент, квадрат которого равен -1 называется мнимой единицей. Обозначается  i (переводится «мнимый», «воображаемый»)
     "Комплексными числами и функциями комплексного переменного математики пользовались в своих исследованиях уже в XVIII в. Особенно велики заслуги крупнейшего математика XVIII в. Леонарда Эйлера (1707—1783), который по праву считается одним из творцов теории функций комплексного переменного. В замечательных работах Эйлера детально изучены элементарные функции комплексного переменного.
      После Эйлера открытые им результаты и методы развивались, совершенствовались и систематизировались, и в первой половине XIX в. теория функций комплексного переменного оформилась как важнейшая отрасль математического анализа. "Первое упоминание о «мнимых» числах как о корнях квадратных и» отрицательных чисел относится еще к XVI в. (Дж. К а р д а н о, 1545). До середины XVIII в. комплексные числа появляются лишь эпизодически в трудах отдельных математиков (И. Ньютон, Н. Бернулли, А. Клеро). Первое изложение теории комплексных чисел на русском языке принадлежит Л. Эйлеру («Алгебра», Петербург, 1763, позднее книга была переведена на иностранные языки и многократно переиздавалась): символ «i» также введен Л. Эйлером. Геометрическая интерпретация комплексных чисел относится к концу XVIII в. (датчанин Каспар Вессель, 1799 г.)."
Описание слайда:
Элемент, квадрат которого равен -1 называется мнимой единицей. Обозначается i (переводится «мнимый», «воображаемый»)      "Комплексными числами и функциями комплексного переменного математики пользовались в своих исследованиях уже в XVIII в. Особенно велики заслуги крупнейшего математика XVIII в. Леонарда Эйлера (1707—1783), который по праву считается одним из творцов теории функций комплексного переменного. В замечательных работах Эйлера детально изучены элементарные функции комплексного переменного.       После Эйлера открытые им результаты и методы развивались, совершенствовались и систематизировались, и в первой половине XIX в. теория функций комплексного переменного оформилась как важнейшая отрасль математического анализа. "Первое упоминание о «мнимых» числах как о корнях квадратных и» отрицательных чисел относится еще к XVI в. (Дж. К а р д а н о, 1545). До середины XVIII в. комплексные числа появляются лишь эпизодически в трудах отдельных математиков (И. Ньютон, Н. Бернулли, А. Клеро). Первое изложение теории комплексных чисел на русском языке принадлежит Л. Эйлеру («Алгебра», Петербург, 1763, позднее книга была переведена на иностранные языки и многократно переиздавалась): символ «i» также введен Л. Эйлером. Геометрическая интерпретация комплексных чисел относится к концу XVIII в. (датчанин Каспар Вессель, 1799 г.)."

Слайд 5





Условия про операции комплексных чисел позволяют умножать комплексные числа на мнимую единицу ( i ). Такое произведение называют чисто мнимыми числами.
Например:  i, 2i, -0,3i – чисто мнимые числа.
3i +13i=(3+13)i = 16i                
3i·13i = (3·13) (i·i)=39i2=-39

ПРАВИЛА  АРИФМЕТИЧЕСКИХ  ОПЕРАЦИЙ

     10   ai+bi=(a+b)i                            20   a(bi)=(ab)i
    30  (ai)(bi)=abi2= -ab                     40    0i =0
Описание слайда:
Условия про операции комплексных чисел позволяют умножать комплексные числа на мнимую единицу ( i ). Такое произведение называют чисто мнимыми числами. Например: i, 2i, -0,3i – чисто мнимые числа. 3i +13i=(3+13)i = 16i 3i·13i = (3·13) (i·i)=39i2=-39 ПРАВИЛА АРИФМЕТИЧЕСКИХ ОПЕРАЦИЙ 10 ai+bi=(a+b)i 20 a(bi)=(ab)i 30 (ai)(bi)=abi2= -ab 40 0i =0

Слайд 6


КОМПЛЕКСНЫЕ ЧИСЛА, слайд №6
Описание слайда:

Слайд 7





Кк


























КОМПЛЕКСНЫЕ ЧИСЛА РАВНЫ, КОГДА РАВНЫ ИХ ДЕЙСТВИТЕЛЬНЫЕ И МНИМЫЕ ЧАСТИ. 

a+bi=c+di, если a=c, b=d
Описание слайда:
Кк КОМПЛЕКСНЫЕ ЧИСЛА РАВНЫ, КОГДА РАВНЫ ИХ ДЕЙСТВИТЕЛЬНЫЕ И МНИМЫЕ ЧАСТИ. a+bi=c+di, если a=c, b=d

Слайд 8


КОМПЛЕКСНЫЕ ЧИСЛА, слайд №8
Описание слайда:



Похожие презентации
Mypresentation.ru
Загрузить презентацию