🗊Великие математики

Категория: Математика
Нажмите для полного просмотра!
Великие математики, слайд №1Великие математики, слайд №2Великие математики, слайд №3Великие математики, слайд №4Великие математики, слайд №5Великие математики, слайд №6Великие математики, слайд №7Великие математики, слайд №8Великие математики, слайд №9Великие математики, слайд №10Великие математики, слайд №11Великие математики, слайд №12

Вы можете ознакомиться и скачать Великие математики. Презентация содержит 12 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Великие математики
Описание слайда:
Великие математики

Слайд 2





В современном мире Пифагор считается великим математиком и космологистом древности, однако ранние свидетельства до III в. до н. э. не упоминают о таких его заслугах. Как пишет Ямвлих про пифагорейцев: «У них также был замечательный обычай приписывать всё Пифагору и нисколько не присваивать себе славы первооткрывателей, кроме, может быть, нескольких случаев.»
В современном мире Пифагор считается великим математиком и космологистом древности, однако ранние свидетельства до III в. до н. э. не упоминают о таких его заслугах. Как пишет Ямвлих про пифагорейцев: «У них также был замечательный обычай приписывать всё Пифагору и нисколько не присваивать себе славы первооткрывателей, кроме, может быть, нескольких случаев.»
Античные авторы нашей эры отдают Пифагору авторство известной теоремы: квадрат гипотенузы треугольника равняется сумме квадратов катетов. Такое мнение основывается на сведениях Аполлодора-исчислителя (личность не идентифицирована) и на стихотворных строках (источник стихов не известен):
авторитетный автор в этом вопросе, Феофраст, отдаёт Пармениду. Да и Диоген Лаэртский сообщает, что суждение о шарообразности Земли высказывал Анаксимандр Милетский, у которого учился Пифагор в юности.
Описание слайда:
В современном мире Пифагор считается великим математиком и космологистом древности, однако ранние свидетельства до III в. до н. э. не упоминают о таких его заслугах. Как пишет Ямвлих про пифагорейцев: «У них также был замечательный обычай приписывать всё Пифагору и нисколько не присваивать себе славы первооткрывателей, кроме, может быть, нескольких случаев.» В современном мире Пифагор считается великим математиком и космологистом древности, однако ранние свидетельства до III в. до н. э. не упоминают о таких его заслугах. Как пишет Ямвлих про пифагорейцев: «У них также был замечательный обычай приписывать всё Пифагору и нисколько не присваивать себе славы первооткрывателей, кроме, может быть, нескольких случаев.» Античные авторы нашей эры отдают Пифагору авторство известной теоремы: квадрат гипотенузы треугольника равняется сумме квадратов катетов. Такое мнение основывается на сведениях Аполлодора-исчислителя (личность не идентифицирована) и на стихотворных строках (источник стихов не известен): авторитетный автор в этом вопросе, Феофраст, отдаёт Пармениду. Да и Диоген Лаэртский сообщает, что суждение о шарообразности Земли высказывал Анаксимандр Милетский, у которого учился Пифагор в юности.

Слайд 3





В то же время, научные заслуги школы пифагорейцев в математике и космологии бесспорны. Точку зрения Аристотеля, отражённую в его несохранившемся трактате «О пифагорейцах», передал Ямвлих. По Аристотелю истинными пифагорейцами были акусматики, последователи религиозно-мистического учения о переселении душ. Акусматики рассматривали математику как учение, исходящее не столько от Пифагора, сколько от пифагорейца Гиппаса. В свою очередь математики-пифагорейцы, по их собственному мнению, вдохновлялись направляющим учением Пифагора для углублённого изучения своей науки.
В то же время, научные заслуги школы пифагорейцев в математике и космологии бесспорны. Точку зрения Аристотеля, отражённую в его несохранившемся трактате «О пифагорейцах», передал Ямвлих. По Аристотелю истинными пифагорейцами были акусматики, последователи религиозно-мистического учения о переселении душ. Акусматики рассматривали математику как учение, исходящее не столько от Пифагора, сколько от пифагорейца Гиппаса. В свою очередь математики-пифагорейцы, по их собственному мнению, вдохновлялись направляющим учением Пифагора для углублённого изучения своей науки.
Описание слайда:
В то же время, научные заслуги школы пифагорейцев в математике и космологии бесспорны. Точку зрения Аристотеля, отражённую в его несохранившемся трактате «О пифагорейцах», передал Ямвлих. По Аристотелю истинными пифагорейцами были акусматики, последователи религиозно-мистического учения о переселении душ. Акусматики рассматривали математику как учение, исходящее не столько от Пифагора, сколько от пифагорейца Гиппаса. В свою очередь математики-пифагорейцы, по их собственному мнению, вдохновлялись направляющим учением Пифагора для углублённого изучения своей науки. В то же время, научные заслуги школы пифагорейцев в математике и космологии бесспорны. Точку зрения Аристотеля, отражённую в его несохранившемся трактате «О пифагорейцах», передал Ямвлих. По Аристотелю истинными пифагорейцами были акусматики, последователи религиозно-мистического учения о переселении душ. Акусматики рассматривали математику как учение, исходящее не столько от Пифагора, сколько от пифагорейца Гиппаса. В свою очередь математики-пифагорейцы, по их собственному мнению, вдохновлялись направляющим учением Пифагора для углублённого изучения своей науки.

Слайд 4


Великие математики, слайд №4
Описание слайда:

Слайд 5





«В день, когда Пифагор открыл свой чертёж знаменитый,
Славную он за него жертву быками воздвиг.»
«В день, когда Пифагор открыл свой чертёж знаменитый,
Славную он за него жертву быками воздвиг.»
Современные историки предполагают, что Пифагор не доказывал теорему, но мог передать грекам это знание, известное в Вавилоне за 1000 лет до Пифагора (согласно вавилонским глиняным табличкам с записями математических уравнений). Хотя сомнение в авторстве Пифагора существует, но весомых аргументов, чтобы это оспорить, нет.
Аристотель затрагивает развитие представлений о космологии в работе «Метафизика», однако вклад Пифагора в ней никак не озвучен. По Аристотелю космологическими теориями занимались пифагорейцы в середине V в. до н. э., но, видимо, не сам Пифагор. Пифагору приписывают открытие, что Земля — шар, но то же открытие наиболее
Описание слайда:
«В день, когда Пифагор открыл свой чертёж знаменитый, Славную он за него жертву быками воздвиг.» «В день, когда Пифагор открыл свой чертёж знаменитый, Славную он за него жертву быками воздвиг.» Современные историки предполагают, что Пифагор не доказывал теорему, но мог передать грекам это знание, известное в Вавилоне за 1000 лет до Пифагора (согласно вавилонским глиняным табличкам с записями математических уравнений). Хотя сомнение в авторстве Пифагора существует, но весомых аргументов, чтобы это оспорить, нет. Аристотель затрагивает развитие представлений о космологии в работе «Метафизика», однако вклад Пифагора в ней никак не озвучен. По Аристотелю космологическими теориями занимались пифагорейцы в середине V в. до н. э., но, видимо, не сам Пифагор. Пифагору приписывают открытие, что Земля — шар, но то же открытие наиболее

Слайд 6





Евклид (ок. 365 — 300 до н. э.) — древнегреческий математик. Работал в Александрии в 3 в. до н. э. Главный труд «Начала» (15 книг), содержащий основы античной математики, элементарной геометрии, теории чисел, общей теории отношений и метода определения площадей и объемов, включавшего элементы теории пределов, оказал огромное влияние на развитие математики. Работы по астрономии, оптике, теории музыки 
Евклид (ок. 365 — 300 до н. э.) — древнегреческий математик. Работал в Александрии в 3 в. до н. э. Главный труд «Начала» (15 книг), содержащий основы античной математики, элементарной геометрии, теории чисел, общей теории отношений и метода определения площадей и объемов, включавшего элементы теории пределов, оказал огромное влияние на развитие математики. Работы по астрономии, оптике, теории музыки
Описание слайда:
Евклид (ок. 365 — 300 до н. э.) — древнегреческий математик. Работал в Александрии в 3 в. до н. э. Главный труд «Начала» (15 книг), содержащий основы античной математики, элементарной геометрии, теории чисел, общей теории отношений и метода определения площадей и объемов, включавшего элементы теории пределов, оказал огромное влияние на развитие математики. Работы по астрономии, оптике, теории музыки Евклид (ок. 365 — 300 до н. э.) — древнегреческий математик. Работал в Александрии в 3 в. до н. э. Главный труд «Начала» (15 книг), содержащий основы античной математики, элементарной геометрии, теории чисел, общей теории отношений и метода определения площадей и объемов, включавшего элементы теории пределов, оказал огромное влияние на развитие математики. Работы по астрономии, оптике, теории музыки

Слайд 7





Сохранившиеся труды Архимеда, в основном математические, составляют целый том. Достижения ученого в области математики огромны. Он решил задачи об определении объема цилиндра и шара, объемов частей параболоидов вращения, был основоположником изучения спиралей, решил проблему квадратуры круга, вычислив довольно узкие границы, между которыми заключено число я. Архимед ввел в математику физическую задачу об определении положения центра тяжести плоских и пространственных фигур и для многих случаев решил ее. Он применил в геометрии метод «мысленного взвешивания», значительно развил предложенный греческим ученым Евдоксом «метод исчерпывания», позволивший исследовать свойства кривых второго порядка.
Сохранившиеся труды Архимеда, в основном математические, составляют целый том. Достижения ученого в области математики огромны. Он решил задачи об определении объема цилиндра и шара, объемов частей параболоидов вращения, был основоположником изучения спиралей, решил проблему квадратуры круга, вычислив довольно узкие границы, между которыми заключено число я. Архимед ввел в математику физическую задачу об определении положения центра тяжести плоских и пространственных фигур и для многих случаев решил ее. Он применил в геометрии метод «мысленного взвешивания», значительно развил предложенный греческим ученым Евдоксом «метод исчерпывания», позволивший исследовать свойства кривых второго порядка.
Описание слайда:
Сохранившиеся труды Архимеда, в основном математические, составляют целый том. Достижения ученого в области математики огромны. Он решил задачи об определении объема цилиндра и шара, объемов частей параболоидов вращения, был основоположником изучения спиралей, решил проблему квадратуры круга, вычислив довольно узкие границы, между которыми заключено число я. Архимед ввел в математику физическую задачу об определении положения центра тяжести плоских и пространственных фигур и для многих случаев решил ее. Он применил в геометрии метод «мысленного взвешивания», значительно развил предложенный греческим ученым Евдоксом «метод исчерпывания», позволивший исследовать свойства кривых второго порядка. Сохранившиеся труды Архимеда, в основном математические, составляют целый том. Достижения ученого в области математики огромны. Он решил задачи об определении объема цилиндра и шара, объемов частей параболоидов вращения, был основоположником изучения спиралей, решил проблему квадратуры круга, вычислив довольно узкие границы, между которыми заключено число я. Архимед ввел в математику физическую задачу об определении положения центра тяжести плоских и пространственных фигур и для многих случаев решил ее. Он применил в геометрии метод «мысленного взвешивания», значительно развил предложенный греческим ученым Евдоксом «метод исчерпывания», позволивший исследовать свойства кривых второго порядка.

Слайд 8





Характерные черты творчества Ч. — разнообразие областей исследования, умение получить посредством элементарных средств большие научные результаты и неизменный интерес к вопросам практики. Исследования Ч. относятся к теории приближения функций многочленами, интегральному исчислению, теории чисел, теории вероятностей, теории механизмов и многим другим разделам математики и смежных областей знания. В каждом из упомянутых разделов Ч. сумел создать ряд основных, общих методов и выдвинул идеи, наметившие ведущие направления в их дальнейшем развитии. Стремление увязать проблемы математики с принципиальными вопросами естествознания и техники в значительной мере определяет его своеобразие как учёного. Многие открытия Ч. навеяны прикладными интересами. Это неоднократно подчёркивал и сам Ч., говоря, что в создании новых методов исследования "... науки находят себе верного руководителя в практике" и что "... сами науки развиваются под влиянием ее: она открывает им новые предметы для исследования 
Характерные черты творчества Ч. — разнообразие областей исследования, умение получить посредством элементарных средств большие научные результаты и неизменный интерес к вопросам практики. Исследования Ч. относятся к теории приближения функций многочленами, интегральному исчислению, теории чисел, теории вероятностей, теории механизмов и многим другим разделам математики и смежных областей знания. В каждом из упомянутых разделов Ч. сумел создать ряд основных, общих методов и выдвинул идеи, наметившие ведущие направления в их дальнейшем развитии. Стремление увязать проблемы математики с принципиальными вопросами естествознания и техники в значительной мере определяет его своеобразие как учёного. Многие открытия Ч. навеяны прикладными интересами. Это неоднократно подчёркивал и сам Ч., говоря, что в создании новых методов исследования "... науки находят себе верного руководителя в практике" и что "... сами науки развиваются под влиянием ее: она открывает им новые предметы для исследования
Описание слайда:
Характерные черты творчества Ч. — разнообразие областей исследования, умение получить посредством элементарных средств большие научные результаты и неизменный интерес к вопросам практики. Исследования Ч. относятся к теории приближения функций многочленами, интегральному исчислению, теории чисел, теории вероятностей, теории механизмов и многим другим разделам математики и смежных областей знания. В каждом из упомянутых разделов Ч. сумел создать ряд основных, общих методов и выдвинул идеи, наметившие ведущие направления в их дальнейшем развитии. Стремление увязать проблемы математики с принципиальными вопросами естествознания и техники в значительной мере определяет его своеобразие как учёного. Многие открытия Ч. навеяны прикладными интересами. Это неоднократно подчёркивал и сам Ч., говоря, что в создании новых методов исследования "... науки находят себе верного руководителя в практике" и что "... сами науки развиваются под влиянием ее: она открывает им новые предметы для исследования Характерные черты творчества Ч. — разнообразие областей исследования, умение получить посредством элементарных средств большие научные результаты и неизменный интерес к вопросам практики. Исследования Ч. относятся к теории приближения функций многочленами, интегральному исчислению, теории чисел, теории вероятностей, теории механизмов и многим другим разделам математики и смежных областей знания. В каждом из упомянутых разделов Ч. сумел создать ряд основных, общих методов и выдвинул идеи, наметившие ведущие направления в их дальнейшем развитии. Стремление увязать проблемы математики с принципиальными вопросами естествознания и техники в значительной мере определяет его своеобразие как учёного. Многие открытия Ч. навеяны прикладными интересами. Это неоднократно подчёркивал и сам Ч., говоря, что в создании новых методов исследования "... науки находят себе верного руководителя в практике" и что "... сами науки развиваются под влиянием ее: она открывает им новые предметы для исследования

Слайд 9





В теории чисел Ч., впервые после Евклида, существенно продвинул (1849, 1852) изучение вопроса о распределении простых чисел. Он доказал, что функция p()— число простых чисел, не превосходящих , удовлетворяет неравенствам
В теории чисел Ч., впервые после Евклида, существенно продвинул (1849, 1852) изучение вопроса о распределении простых чисел. Он доказал, что функция p()— число простых чисел, не превосходящих , удовлетворяет неравенствам

где < 1 и > 1 — вычисленные Ч. постоянные ( = 0,921,  = 1,06). Исследование расположения простых чисел в ряду всех целых чисел привело Ч. также к исследованию квадратичных форм с положительными определителями. Работа Ч., посвященная приближению чисел рациональными числами (1866), сыграла важную роль в развитии теории диофантовых приближений. Он явился создателем новых направлений исследований в теории чисел и новых методов иссл
Описание слайда:
В теории чисел Ч., впервые после Евклида, существенно продвинул (1849, 1852) изучение вопроса о распределении простых чисел. Он доказал, что функция p()— число простых чисел, не превосходящих , удовлетворяет неравенствам В теории чисел Ч., впервые после Евклида, существенно продвинул (1849, 1852) изучение вопроса о распределении простых чисел. Он доказал, что функция p()— число простых чисел, не превосходящих , удовлетворяет неравенствам где < 1 и > 1 — вычисленные Ч. постоянные ( = 0,921, = 1,06). Исследование расположения простых чисел в ряду всех целых чисел привело Ч. также к исследованию квадратичных форм с положительными определителями. Работа Ч., посвященная приближению чисел рациональными числами (1866), сыграла важную роль в развитии теории диофантовых приближений. Он явился создателем новых направлений исследований в теории чисел и новых методов иссл

Слайд 10


Великие математики, слайд №10
Описание слайда:

Слайд 11


Великие математики, слайд №11
Описание слайда:

Слайд 12


Великие математики, слайд №12
Описание слайда:



Похожие презентации
Mypresentation.ru
Загрузить презентацию