🗊Презентация Квадратные уравнения

Категория: Математика
Нажмите для полного просмотра!
Квадратные уравнения, слайд №1Квадратные уравнения, слайд №2Квадратные уравнения, слайд №3Квадратные уравнения, слайд №4Квадратные уравнения, слайд №5Квадратные уравнения, слайд №6Квадратные уравнения, слайд №7Квадратные уравнения, слайд №8Квадратные уравнения, слайд №9Квадратные уравнения, слайд №10Квадратные уравнения, слайд №11Квадратные уравнения, слайд №12Квадратные уравнения, слайд №13Квадратные уравнения, слайд №14Квадратные уравнения, слайд №15Квадратные уравнения, слайд №16Квадратные уравнения, слайд №17Квадратные уравнения, слайд №18Квадратные уравнения, слайд №19Квадратные уравнения, слайд №20

Содержание

Вы можете ознакомиться и скачать презентацию на тему Квадратные уравнения. Доклад-сообщение содержит 20 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1


Квадратные уравнения, слайд №1
Описание слайда:

Слайд 2





  Квадратные уравнения  в Древнем Вавилоне 
  Квадратные уравнения  в Древнем Вавилоне
Описание слайда:
Квадратные уравнения в Древнем Вавилоне Квадратные уравнения в Древнем Вавилоне

Слайд 3





    Необходимость решать уравнения не только первой, но и второй степени ещё в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. 
    Необходимость решать уравнения не только первой, но и второй степени ещё в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики.
Описание слайда:
Необходимость решать уравнения не только первой, но и второй степени ещё в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Необходимость решать уравнения не только первой, но и второй степени ещё в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики.

Слайд 4





    Квадратные уравнения умели решать около 2000 лет до н.э. вавилоняне. Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных и  полные квадратные уравнения. 
    Квадратные уравнения умели решать около 2000 лет до н.э. вавилоняне. Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных и  полные квадратные уравнения.
Описание слайда:
Квадратные уравнения умели решать около 2000 лет до н.э. вавилоняне. Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных и полные квадратные уравнения. Квадратные уравнения умели решать около 2000 лет до н.э. вавилоняне. Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных и полные квадратные уравнения.

Слайд 5





     Правила решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены.
     Правила решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены.
Описание слайда:
Правила решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены. Правила решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены.

Слайд 6





    Несмотря на высокий уровень развития алгебры в Вавилоне в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.
    Несмотря на высокий уровень развития алгебры в Вавилоне в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.
Описание слайда:
Несмотря на высокий уровень развития алгебры в Вавилоне в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений. Несмотря на высокий уровень развития алгебры в Вавилоне в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

Слайд 7





    Некоторые виды квадратных уравнений, сводя их решение к геометрическим построениям, могли решать древнегреческие математики. Приёмы решения уравнений без обращения к геометрии даёт Диофант Александрийский (IIIв.).В дошедших до нас шести из 13 книг «Арифметика» содержатся задачи с решениями, в которых Диофант объясняет, как надо выбрать неизвестное, чтобы получить решение уравнения вида ax=b или ax =b.Способ решения полных квадратных уравнений Диофант изложил в книгах «Арифметика»,которые не сохранились.
    Некоторые виды квадратных уравнений, сводя их решение к геометрическим построениям, могли решать древнегреческие математики. Приёмы решения уравнений без обращения к геометрии даёт Диофант Александрийский (IIIв.).В дошедших до нас шести из 13 книг «Арифметика» содержатся задачи с решениями, в которых Диофант объясняет, как надо выбрать неизвестное, чтобы получить решение уравнения вида ax=b или ax =b.Способ решения полных квадратных уравнений Диофант изложил в книгах «Арифметика»,которые не сохранились.
Описание слайда:
Некоторые виды квадратных уравнений, сводя их решение к геометрическим построениям, могли решать древнегреческие математики. Приёмы решения уравнений без обращения к геометрии даёт Диофант Александрийский (IIIв.).В дошедших до нас шести из 13 книг «Арифметика» содержатся задачи с решениями, в которых Диофант объясняет, как надо выбрать неизвестное, чтобы получить решение уравнения вида ax=b или ax =b.Способ решения полных квадратных уравнений Диофант изложил в книгах «Арифметика»,которые не сохранились. Некоторые виды квадратных уравнений, сводя их решение к геометрическим построениям, могли решать древнегреческие математики. Приёмы решения уравнений без обращения к геометрии даёт Диофант Александрийский (IIIв.).В дошедших до нас шести из 13 книг «Арифметика» содержатся задачи с решениями, в которых Диофант объясняет, как надо выбрать неизвестное, чтобы получить решение уравнения вида ax=b или ax =b.Способ решения полных квадратных уравнений Диофант изложил в книгах «Арифметика»,которые не сохранились.

Слайд 8





Квадратные уравнения в Индии
Описание слайда:
Квадратные уравнения в Индии

Слайд 9





     Задачи на квадратные уравнениям встречаются уже в астрономическом трактате «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабхаттой. Другой индийский учёный, Брахмагупта ( VII в. ), изложил общее правило решения квадратных уравнений, приведённых к единой канонической форме: ах +bx=c, a>0.
     Задачи на квадратные уравнениям встречаются уже в астрономическом трактате «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабхаттой. Другой индийский учёный, Брахмагупта ( VII в. ), изложил общее правило решения квадратных уравнений, приведённых к единой канонической форме: ах +bx=c, a>0.
Описание слайда:
Задачи на квадратные уравнениям встречаются уже в астрономическом трактате «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабхаттой. Другой индийский учёный, Брахмагупта ( VII в. ), изложил общее правило решения квадратных уравнений, приведённых к единой канонической форме: ах +bx=c, a>0. Задачи на квадратные уравнениям встречаются уже в астрономическом трактате «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабхаттой. Другой индийский учёный, Брахмагупта ( VII в. ), изложил общее правило решения квадратных уравнений, приведённых к единой канонической форме: ах +bx=c, a>0.

Слайд 10





   В уравнении коэффициенты, кроме а, могут быть и отрицательными. Правило Брахмагупты по существу совпадает с нашим.
   В уравнении коэффициенты, кроме а, могут быть и отрицательными. Правило Брахмагупты по существу совпадает с нашим.
Описание слайда:
В уравнении коэффициенты, кроме а, могут быть и отрицательными. Правило Брахмагупты по существу совпадает с нашим. В уравнении коэффициенты, кроме а, могут быть и отрицательными. Правило Брахмагупты по существу совпадает с нашим.

Слайд 11





     В древней Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: « Как солнце блеском своим затмевает звёзды, так учёный человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму.
     В древней Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: « Как солнце блеском своим затмевает звёзды, так учёный человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму.
Описание слайда:
В древней Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: « Как солнце блеском своим затмевает звёзды, так учёный человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму. В древней Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: « Как солнце блеском своим затмевает звёзды, так учёный человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму.

Слайд 12





«Обезьянок резвых стая 
«Обезьянок резвых стая 
Всласть поевши, развлекалась.
Их в квадрате часть восьмая
На поляне забавлялась.
А двенадцать по лианам…
Стали прыгать, повисая…
Сколько ж было обезьянок.
Ты скажи мне, в этой стае?»
Описание слайда:
«Обезьянок резвых стая «Обезьянок резвых стая Всласть поевши, развлекалась. Их в квадрате часть восьмая На поляне забавлялась. А двенадцать по лианам… Стали прыгать, повисая… Сколько ж было обезьянок. Ты скажи мне, в этой стае?»

Слайд 13





      Решение Бхаскары свидетельствует о том, что он знал о двузначности корней квадратных уравнений. Соответствующее этой задаче уравнение: (Х/8)  + 12 = х, Бхаскара пишет под видом Х  – 64Х = -768 и, чтобы дополнить левую часть этого уравнения до квадрата, прибавляет к обеим частям 32, получая затем:
      Решение Бхаскары свидетельствует о том, что он знал о двузначности корней квадратных уравнений. Соответствующее этой задаче уравнение: (Х/8)  + 12 = х, Бхаскара пишет под видом Х  – 64Х = -768 и, чтобы дополнить левую часть этого уравнения до квадрата, прибавляет к обеим частям 32, получая затем:
                Х  - 64Х + 32  = -768 + 1024
                           (Х – 32)  = 256
Х1 = 16, Х2 = 48.
Описание слайда:
Решение Бхаскары свидетельствует о том, что он знал о двузначности корней квадратных уравнений. Соответствующее этой задаче уравнение: (Х/8) + 12 = х, Бхаскара пишет под видом Х – 64Х = -768 и, чтобы дополнить левую часть этого уравнения до квадрата, прибавляет к обеим частям 32, получая затем: Решение Бхаскары свидетельствует о том, что он знал о двузначности корней квадратных уравнений. Соответствующее этой задаче уравнение: (Х/8) + 12 = х, Бхаскара пишет под видом Х – 64Х = -768 и, чтобы дополнить левую часть этого уравнения до квадрата, прибавляет к обеим частям 32, получая затем: Х - 64Х + 32 = -768 + 1024 (Х – 32) = 256 Х1 = 16, Х2 = 48.

Слайд 14





Квадратные уравнения ал - Хорезми
Описание слайда:
Квадратные уравнения ал - Хорезми

Слайд 15





     Трактат ал – Хорезми является первой дошедшей до нас книгой, в которой систематически изложена классификация квадратных уравнений и даны формулы их решения. 
     Трактат ал – Хорезми является первой дошедшей до нас книгой, в которой систематически изложена классификация квадратных уравнений и даны формулы их решения. 
    Хорезмский математик аль – Хорезми разъясняет приёмы решения уравнений вида ax =bx, ax =c, ax=c, ax +c=bx, ax +bx=c, bx+c=ax , (буквами a, b и c обозначены лишь положительные числа) и отыскивает только положительные корни.
Описание слайда:
Трактат ал – Хорезми является первой дошедшей до нас книгой, в которой систематически изложена классификация квадратных уравнений и даны формулы их решения. Трактат ал – Хорезми является первой дошедшей до нас книгой, в которой систематически изложена классификация квадратных уравнений и даны формулы их решения. Хорезмский математик аль – Хорезми разъясняет приёмы решения уравнений вида ax =bx, ax =c, ax=c, ax +c=bx, ax +bx=c, bx+c=ax , (буквами a, b и c обозначены лишь положительные числа) и отыскивает только положительные корни.

Слайд 16





Квадратные уравнения в Европе XIII – XVIIвв.
       Формулы решения квадратных уравнений по образцу ал – Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202 г. итальянским математиком Леонардо Фибоначчи. Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в  Европе  подошёл к введению отрицательных чисел.
       Общее правило решения квадратных уравнений, приведённых к единому каноническому виду x +bx=c, при всевозможных комбинациях знаков коэффициентов b, c было сформулировано в Европе в 1544 г. М. Штифеле.
Описание слайда:
Квадратные уравнения в Европе XIII – XVIIвв. Формулы решения квадратных уравнений по образцу ал – Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202 г. итальянским математиком Леонардо Фибоначчи. Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошёл к введению отрицательных чисел. Общее правило решения квадратных уравнений, приведённых к единому каноническому виду x +bx=c, при всевозможных комбинациях знаков коэффициентов b, c было сформулировано в Европе в 1544 г. М. Штифеле.

Слайд 17





      Французский математик Франсуа Виет (1540 – 1603). Виет первым догадался обозначить буквами не только  неизвестные, но и коэффициенты при них. Ведь используя буквы можно было записывать формулы. Это был огромный шаг вперёд. Недаром Виета часто называют «отцом алгебры». Недостатком алгебры Виета было то, что он признавал только положительные числа. Полученные Виетом системы равенств, связывающие корни уравнения с коэффициентами, теперь называют теоремой Виета.
      Французский математик Франсуа Виет (1540 – 1603). Виет первым догадался обозначить буквами не только  неизвестные, но и коэффициенты при них. Ведь используя буквы можно было записывать формулы. Это был огромный шаг вперёд. Недаром Виета часто называют «отцом алгебры». Недостатком алгебры Виета было то, что он признавал только положительные числа. Полученные Виетом системы равенств, связывающие корни уравнения с коэффициентами, теперь называют теоремой Виета.
Описание слайда:
Французский математик Франсуа Виет (1540 – 1603). Виет первым догадался обозначить буквами не только неизвестные, но и коэффициенты при них. Ведь используя буквы можно было записывать формулы. Это был огромный шаг вперёд. Недаром Виета часто называют «отцом алгебры». Недостатком алгебры Виета было то, что он признавал только положительные числа. Полученные Виетом системы равенств, связывающие корни уравнения с коэффициентами, теперь называют теоремой Виета. Французский математик Франсуа Виет (1540 – 1603). Виет первым догадался обозначить буквами не только неизвестные, но и коэффициенты при них. Ведь используя буквы можно было записывать формулы. Это был огромный шаг вперёд. Недаром Виета часто называют «отцом алгебры». Недостатком алгебры Виета было то, что он признавал только положительные числа. Полученные Виетом системы равенств, связывающие корни уравнения с коэффициентами, теперь называют теоремой Виета.

Слайд 18





  «Поэтому по праву должна быть воспета
  «Поэтому по праву должна быть воспета
О свойствах корней теорема Виета.
Что лучше, скажи, постоянства такого-
Умножишь ты корни и дробь уж готова:
В числителе c, в знаменателе a 
И сумма корней тоже дроби равна,
Хоть с минусом дробь та, что за беда:
В числителе b в знаменателе a».
Описание слайда:
«Поэтому по праву должна быть воспета «Поэтому по праву должна быть воспета О свойствах корней теорема Виета. Что лучше, скажи, постоянства такого- Умножишь ты корни и дробь уж готова: В числителе c, в знаменателе a И сумма корней тоже дроби равна, Хоть с минусом дробь та, что за беда: В числителе b в знаменателе a».

Слайд 19





     Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVIв. учитывают, помимо положительных, и отрицательные корни. Лишь в XVIIв. благодаря трудам Жирара, Декарта, Ньютона и других учёных способ решения квадратных уравнений принимает современный вид.
     Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVIв. учитывают, помимо положительных, и отрицательные корни. Лишь в XVIIв. благодаря трудам Жирара, Декарта, Ньютона и других учёных способ решения квадратных уравнений принимает современный вид.
Описание слайда:
Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVIв. учитывают, помимо положительных, и отрицательные корни. Лишь в XVIIв. благодаря трудам Жирара, Декарта, Ньютона и других учёных способ решения квадратных уравнений принимает современный вид. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVIв. учитывают, помимо положительных, и отрицательные корни. Лишь в XVIIв. благодаря трудам Жирара, Декарта, Ньютона и других учёных способ решения квадратных уравнений принимает современный вид.

Слайд 20





Презентацию выполнили:
Клишина Марина 8А класс
Крощук Иван 8А класс
Крощук Геннадий 8А класс
Руководитель: Рябова Лилия Геннадьевна
Описание слайда:
Презентацию выполнили: Клишина Марина 8А класс Крощук Иван 8А класс Крощук Геннадий 8А класс Руководитель: Рябова Лилия Геннадьевна



Похожие презентации
Mypresentation.ru
Загрузить презентацию