🗊Презентация Теорема Пифагора

Категория: Математика
Нажмите для полного просмотра!
Теорема Пифагора, слайд №1Теорема Пифагора, слайд №2Теорема Пифагора, слайд №3Теорема Пифагора, слайд №4Теорема Пифагора, слайд №5Теорема Пифагора, слайд №6Теорема Пифагора, слайд №7Теорема Пифагора, слайд №8

Вы можете ознакомиться и скачать презентацию на тему Теорема Пифагора. Доклад-сообщение содержит 8 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1


Теорема Пифагора, слайд №1
Описание слайда:

Слайд 2





       Пифагор Самосский ( 570—490 гг. до н. э.) — древнегреческий философ и математик, создатель религиозно-философской школы пифагорейцев.
       Пифагор Самосский ( 570—490 гг. до н. э.) — древнегреческий философ и математик, создатель религиозно-философской школы пифагорейцев.
       Историю жизни Пифагора трудно отделить от легенд, представляющих его в качестве совершенного мудреца и великого посвящённого во все таинства греков и варваров. Ещё Геродот называл его «величайшим эллинским мудрецом».
Описание слайда:
Пифагор Самосский ( 570—490 гг. до н. э.) — древнегреческий философ и математик, создатель религиозно-философской школы пифагорейцев. Пифагор Самосский ( 570—490 гг. до н. э.) — древнегреческий философ и математик, создатель религиозно-философской школы пифагорейцев. Историю жизни Пифагора трудно отделить от легенд, представляющих его в качестве совершенного мудреца и великого посвящённого во все таинства греков и варваров. Ещё Геродот называл его «величайшим эллинским мудрецом».

Слайд 3





         Школа была основана Пифагором в Кротоне (Южная Италия) и просуществовала до начала IV в. до н.э., хотя гонения на нее начались практически сразу после смерти Пифагора в 500 г. По сути, это была первая философская школа, религиозно-философское аристократическое братство; она имела большое влияние на греческие полисы Южной Италии и Сицилии.
         Школа была основана Пифагором в Кротоне (Южная Италия) и просуществовала до начала IV в. до н.э., хотя гонения на нее начались практически сразу после смерти Пифагора в 500 г. По сути, это была первая философская школа, религиозно-философское аристократическое братство; она имела большое влияние на греческие полисы Южной Италии и Сицилии.
         Союз отличался строгими обычаями и высокой нравственностью. Образ жизни пифагорейцев вошел в историю: как рассказывают легенды, учеников Школы всегда можно было узнать по их внешнему облику и благородному поведению.
         Пифагорейская школа положила начало математическим наукам. В пифагорейской школе начали развиваться астрономия и медицина.
Описание слайда:
Школа была основана Пифагором в Кротоне (Южная Италия) и просуществовала до начала IV в. до н.э., хотя гонения на нее начались практически сразу после смерти Пифагора в 500 г. По сути, это была первая философская школа, религиозно-философское аристократическое братство; она имела большое влияние на греческие полисы Южной Италии и Сицилии. Школа была основана Пифагором в Кротоне (Южная Италия) и просуществовала до начала IV в. до н.э., хотя гонения на нее начались практически сразу после смерти Пифагора в 500 г. По сути, это была первая философская школа, религиозно-философское аристократическое братство; она имела большое влияние на греческие полисы Южной Италии и Сицилии. Союз отличался строгими обычаями и высокой нравственностью. Образ жизни пифагорейцев вошел в историю: как рассказывают легенды, учеников Школы всегда можно было узнать по их внешнему облику и благородному поведению. Пифагорейская школа положила начало математическим наукам. В пифагорейской школе начали развиваться астрономия и медицина.

Слайд 4





В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.
В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.
Описание слайда:
В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Слайд 5





     Достроим треугольник до квадрата со стороной a+b. Его площадь равна S=(a+b)²
     Достроим треугольник до квадрата со стороной a+b. Его площадь равна S=(a+b)²
С другой стороны этот квадрат состоит из четырех равных треугольников
Sтр=1/2ab; 4Sтр=2ab
и квадрата со стороной с
Sкв=с²
Отсюда S=2ab+c²
Описание слайда:
Достроим треугольник до квадрата со стороной a+b. Его площадь равна S=(a+b)² Достроим треугольник до квадрата со стороной a+b. Его площадь равна S=(a+b)² С другой стороны этот квадрат состоит из четырех равных треугольников Sтр=1/2ab; 4Sтр=2ab и квадрата со стороной с Sкв=с² Отсюда S=2ab+c²

Слайд 6





Из [1] и [2] получим
Из [1] и [2] получим
(a+b)²=2ab+c²
a²+ b²+2ab=2ab+c²
a²+b²=c²
Что и требовалось доказать.
Описание слайда:
Из [1] и [2] получим Из [1] и [2] получим (a+b)²=2ab+c² a²+ b²+2ab=2ab+c² a²+b²=c² Что и требовалось доказать.

Слайд 7





1. Расположим четыре равных прямоугольных треугольника так, как показано на рисунке.
2. Четырёхугольник со сторонами c является квадратом, так как сумма двух острых углов 90°, а развёрнутый угол — 180°.
3. Площадь всей фигуры равна, с одной стороны, площади квадрата со стороной (a+b), а с другой стороны, сумме площадей четырёх треугольников и внутреннего квадрата.
1. Расположим четыре равных прямоугольных треугольника так, как показано на рисунке.
2. Четырёхугольник со сторонами c является квадратом, так как сумма двух острых углов 90°, а развёрнутый угол — 180°.
3. Площадь всей фигуры равна, с одной стороны, площади квадрата со стороной (a+b), а с другой стороны, сумме площадей четырёх треугольников и внутреннего квадрата.

Что и требовалось доказать.
Описание слайда:
1. Расположим четыре равных прямоугольных треугольника так, как показано на рисунке. 2. Четырёхугольник со сторонами c является квадратом, так как сумма двух острых углов 90°, а развёрнутый угол — 180°. 3. Площадь всей фигуры равна, с одной стороны, площади квадрата со стороной (a+b), а с другой стороны, сумме площадей четырёх треугольников и внутреннего квадрата. 1. Расположим четыре равных прямоугольных треугольника так, как показано на рисунке. 2. Четырёхугольник со сторонами c является квадратом, так как сумма двух острых углов 90°, а развёрнутый угол — 180°. 3. Площадь всей фигуры равна, с одной стороны, площади квадрата со стороной (a+b), а с другой стороны, сумме площадей четырёх треугольников и внутреннего квадрата. Что и требовалось доказать.

Слайд 8





http://www.univer.omsk.su/omsk/Edu/Math/ppifagor.jpg
http://www.univer.omsk.su/omsk/Edu/Math/ppifagor.jpg
2. http://www.abc-people.com/data/rafael-santi/pic-8b.jpg
3. Учебник «Геометрия» 7-9 кл., Атанасян Л.С., -М.: Просвещение.
Описание слайда:
http://www.univer.omsk.su/omsk/Edu/Math/ppifagor.jpg http://www.univer.omsk.su/omsk/Edu/Math/ppifagor.jpg 2. http://www.abc-people.com/data/rafael-santi/pic-8b.jpg 3. Учебник «Геометрия» 7-9 кл., Атанасян Л.С., -М.: Просвещение.



Похожие презентации
Mypresentation.ru
Загрузить презентацию