Описание слайда:
Пример.
Пример.
1. Следующие выражения являются формулами логики предикатов:
а) A & B → C, где A, B, C – высказывания.
б) xyQ(x, y, z) & xyP(x, y, u).
Проанализируем последовательно это выражение.
Предикат Q(x, y, z) – формула;
Выражение xyQ(x, y, z) – формула; переменные x, y – связанные, переменная z – свободная.
Предикат P(x, y, u) – формула.
Выражение xyP(x, y, u) – формула; переменные x, y – связанные, переменная u – свободная.
Выражение xyQ(x, y, z) & xyP(x, y, u) – формула; переменные x, y – связанные, переменные z, u – свободные.
2. Выражение xyP(x,y,z) Þ Q(x,y,z) формулой не является.
Действительно, выражение xyP(x,y,z) есть формула, в которой переменные x и y связанные, а переменная z свободная. Выражение Q(x,y,z) также формула, но в ней все переменные x, y, z свободные.