🗊Презентация Теорема Пифагора

Категория: Математика
Нажмите для полного просмотра!
Теорема Пифагора, слайд №1Теорема Пифагора, слайд №2Теорема Пифагора, слайд №3Теорема Пифагора, слайд №4Теорема Пифагора, слайд №5Теорема Пифагора, слайд №6Теорема Пифагора, слайд №7Теорема Пифагора, слайд №8Теорема Пифагора, слайд №9Теорема Пифагора, слайд №10Теорема Пифагора, слайд №11Теорема Пифагора, слайд №12Теорема Пифагора, слайд №13Теорема Пифагора, слайд №14Теорема Пифагора, слайд №15

Вы можете ознакомиться и скачать презентацию на тему Теорема Пифагора. Доклад-сообщение содержит 15 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Теорема Пифагора
Подготовила токарюк светлана 8б
Описание слайда:
Теорема Пифагора Подготовила токарюк светлана 8б

Слайд 2






Пифагор 
(570 – 490 года до н.э.) – древнегреческий математик, мыслитель и философ.
Описание слайда:
Пифагор  (570 – 490 года до н.э.) – древнегреческий математик, мыслитель и философ.

Слайд 3






Факты биографии Пифагора не известны достоверно. О его жизненном пути можно судить лишь из произведений других древнегреческих философов. По их мнению, математик Пифагор общался с известнейшими мудрецами, учеными того времени.
Известно, что долгое время Пифагор пробыл в Египте, изучая местные таинства. 
Описание слайда:
Факты биографии Пифагора не известны достоверно. О его жизненном пути можно судить лишь из произведений других древнегреческих философов. По их мнению, математик Пифагор общался с известнейшими мудрецами, учеными того времени. Известно, что долгое время Пифагор пробыл в Египте, изучая местные таинства. 

Слайд 4






Философия Пифагора, его образ жизни привлекли многих последователей, но у философа и ученого было и много противников.
Как математик Пифагор достиг больших успехов.Одна из самых известных геометрических теорем — теорема Пифагора, ему приписывают открытие и доказательство теоремы, создание таблицы Пифагора.
Описание слайда:
Философия Пифагора, его образ жизни привлекли многих последователей, но у философа и ученого было и много противников. Как математик Пифагор достиг больших успехов.Одна из самых известных геометрических теорем — теорема Пифагора, ему приписывают открытие и доказательство теоремы, создание таблицы Пифагора.

Слайд 5





В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов
Описание слайда:
В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов

Слайд 6





 1 Доказательство теоремы
Пусть треугольник  ABC- прямоугольный треугольник с прямым углом 
Проведём высоту из вершины C  на гипотенузу AB, основание высоты обозначим как  H .
Прямоугольный треугольник  ACH  подобен треугольнику ABC  по двум углам (                                       ,       - -общий)                        
 Аналогично, треугольник CBH подобен ABC
  .
Описание слайда:
1 Доказательство теоремы Пусть треугольник  ABC- прямоугольный треугольник с прямым углом  Проведём высоту из вершины C  на гипотенузу AB, основание высоты обозначим как  H . Прямоугольный треугольник  ACH подобен треугольнику ABC  по двум углам (   ,   - -общий) Аналогично, треугольник CBH подобен ABC   .

Слайд 7





 1 Доказательство теоремы
  .
Описание слайда:
1 Доказательство теоремы   .

Слайд 8


Теорема Пифагора, слайд №8
Описание слайда:

Слайд 9





Доказательство 2
Для самого простого доказательства теоремы Пифагора для прямоугольного треугольника нужно задать идеальные условия: пусть треугольник будет не только прямоугольным, но и равнобедренным. Есть основания полагать, что именно такой треугольник первоначально рассматривали математики древности.
Утверждение «квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на его катетах» можно проиллюстрировать следующим чертежом:(след. слайд)
Описание слайда:
Доказательство 2 Для самого простого доказательства теоремы Пифагора для прямоугольного треугольника нужно задать идеальные условия: пусть треугольник будет не только прямоугольным, но и равнобедренным. Есть основания полагать, что именно такой треугольник первоначально рассматривали математики древности. Утверждение «квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на его катетах» можно проиллюстрировать следующим чертежом:(след. слайд)

Слайд 10





Доказательство 2
  
Посмотрите на равнобедренный прямоугольный треугольник ABC: На гипотенузе АС можно построить квадрат, состоящий из четырех треугольников, равных исходному АВС. А на катетах АВ и ВС построено по квадрату, каждый из которых содержит по два аналогичных треугольника.
Кстати, этот чертеж лег в основу многочисленных анекдотов и карикатур, посвященных теореме Пифагора. Самый знаменитый, пожалуй, это «Пифагоровы штаны во все стороны равны»:
Описание слайда:
Доказательство 2 Посмотрите на равнобедренный прямоугольный треугольник ABC: На гипотенузе АС можно построить квадрат, состоящий из четырех треугольников, равных исходному АВС. А на катетах АВ и ВС построено по квадрату, каждый из которых содержит по два аналогичных треугольника. Кстати, этот чертеж лег в основу многочисленных анекдотов и карикатур, посвященных теореме Пифагора. Самый знаменитый, пожалуй, это «Пифагоровы штаны во все стороны равны»:

Слайд 11





Доказательство 3
Этот метод сочетает в себе алгебру и геометрию.
Постройте прямоугольный треугольник со сторонами a, b и c (рис.1). 
Затем постройте два квадрата со сторонами, равными сумме длин двух катетов, – (a+b). В каждом из квадратов выполните построения, как на рисунках 2 и 3.
В первом квадрате постройте четыре таких же треугольника, как на рисунке 1. В результате получаться два квадрата: один со стороной a, второй со стороной b.
Описание слайда:
Доказательство 3 Этот метод сочетает в себе алгебру и геометрию. Постройте прямоугольный треугольник со сторонами a, b и c (рис.1). Затем постройте два квадрата со сторонами, равными сумме длин двух катетов, – (a+b). В каждом из квадратов выполните построения, как на рисунках 2 и 3. В первом квадрате постройте четыре таких же треугольника, как на рисунке 1. В результате получаться два квадрата: один со стороной a, второй со стороной b.

Слайд 12






Во втором квадрате четыре построенных аналогичных треугольника образуют квадрат со стороной, равной гипотенузе c.
Сумма площадей построенных квадратов на рис.2 равна площади построенного нами квадрата со стороной с на рис.3. Это легко проверить, высчитав площади квадратов на рис. 2 по формуле. А площадь вписанного квадрата на рисунке 3. путем вычитания площадей четырех равных между собой вписанных в квадрат прямоугольных треугольников из площади большого квадрата со стороной (a+b).
Описание слайда:
Во втором квадрате четыре построенных аналогичных треугольника образуют квадрат со стороной, равной гипотенузе c. Сумма площадей построенных квадратов на рис.2 равна площади построенного нами квадрата со стороной с на рис.3. Это легко проверить, высчитав площади квадратов на рис. 2 по формуле. А площадь вписанного квадрата на рисунке 3. путем вычитания площадей четырех равных между собой вписанных в квадрат прямоугольных треугольников из площади большого квадрата со стороной (a+b).

Слайд 13






Записав все это, имеем: a2+b2=(a+b)2 – 2ab. Раскройте скобки, проведите все необходимые алгебраические вычисления и получите, что a2+b2= a2+b2. При этом площадь вписанного на рис.3. квадрата можно вычислить и по традиционной формуле S=c2. Т.е. a2+b2=c2 – вы доказали теорему Пифагора.
Описание слайда:
Записав все это, имеем: a2+b2=(a+b)2 – 2ab. Раскройте скобки, проведите все необходимые алгебраические вычисления и получите, что a2+b2= a2+b2. При этом площадь вписанного на рис.3. квадрата можно вычислить и по традиционной формуле S=c2. Т.е. a2+b2=c2 – вы доказали теорему Пифагора.

Слайд 14





источники
https://www.tutoronline.ru/blog/teorema-pifagora
http://www.webmath.ru/poleznoe/formules_19_1.php
http://www.yaklass.ru/p/geometria/8-klass/ploshchadi-figur-9235/teorema-pifagora-9225/re-c8adcccc-87a7-47f4-ae00-4d42ac40b985
https://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%9F%D0%B8%D1%84%D0%B0%D0%B3%D0%BE%D1%80%D0%B0
Описание слайда:
источники https://www.tutoronline.ru/blog/teorema-pifagora http://www.webmath.ru/poleznoe/formules_19_1.php http://www.yaklass.ru/p/geometria/8-klass/ploshchadi-figur-9235/teorema-pifagora-9225/re-c8adcccc-87a7-47f4-ae00-4d42ac40b985 https://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%9F%D0%B8%D1%84%D0%B0%D0%B3%D0%BE%D1%80%D0%B0

Слайд 15





Спасибо за внимание!!
Описание слайда:
Спасибо за внимание!!



Похожие презентации
Mypresentation.ru
Загрузить презентацию