🗊Презентация Правильные многогранники

Категория: Математика
Нажмите для полного просмотра!
Правильные многогранники, слайд №1Правильные многогранники, слайд №2Правильные многогранники, слайд №3Правильные многогранники, слайд №4Правильные многогранники, слайд №5Правильные многогранники, слайд №6Правильные многогранники, слайд №7Правильные многогранники, слайд №8Правильные многогранники, слайд №9Правильные многогранники, слайд №10Правильные многогранники, слайд №11Правильные многогранники, слайд №12Правильные многогранники, слайд №13Правильные многогранники, слайд №14Правильные многогранники, слайд №15Правильные многогранники, слайд №16Правильные многогранники, слайд №17Правильные многогранники, слайд №18Правильные многогранники, слайд №19

Вы можете ознакомиться и скачать презентацию на тему Правильные многогранники. Доклад-сообщение содержит 19 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1






Группа: 109-86А
Выполнил: Жанен С.С.
                             2017год
Описание слайда:
Группа: 109-86А Выполнил: Жанен С.С. 2017год

Слайд 2





Многогранником называется тело, граница которого является объединением конечного числа многоугольников.
Описание слайда:
Многогранником называется тело, граница которого является объединением конечного числа многоугольников.

Слайд 3


Правильные многогранники, слайд №3
Описание слайда:

Слайд 4





Правильные многогранники

Сколько же их существует?
Описание слайда:
Правильные многогранники Сколько же их существует?

Слайд 5





Тетраэдр
Сначала рассмотрим случай, когда грани многогранника - равносторонние треугольники. Поскольку внутренний угол равностороннего треугольника равен 60°, три таких угла дадут в развертке 180°. Если теперь склеить развертку в многогранный угол, получится тетраэдр - многогранник, в каждой вершине которого встречаются три правильные треугольные грани.
Описание слайда:
Тетраэдр Сначала рассмотрим случай, когда грани многогранника - равносторонние треугольники. Поскольку внутренний угол равностороннего треугольника равен 60°, три таких угла дадут в развертке 180°. Если теперь склеить развертку в многогранный угол, получится тетраэдр - многогранник, в каждой вершине которого встречаются три правильные треугольные грани.

Слайд 6





Октаэдр-
Если добавить к развертке вершины еще один треугольник, в сумме получится 240°. Это развертка вершины октаэдра. Октаэдр-восьмигранник, тело, ограниченное восемью правильными треугольниками.
Описание слайда:
Октаэдр- Если добавить к развертке вершины еще один треугольник, в сумме получится 240°. Это развертка вершины октаэдра. Октаэдр-восьмигранник, тело, ограниченное восемью правильными треугольниками.

Слайд 7





Икосаэдр
Добавление пятого треугольника даст угол 300° - мы получаем развертку вершины икосаэдра.
Икосаэдр-двадцатигранник, тело, ограниченное  двадцатью равносторонними треугольниками
Описание слайда:
Икосаэдр Добавление пятого треугольника даст угол 300° - мы получаем развертку вершины икосаэдра. Икосаэдр-двадцатигранник, тело, ограниченное двадцатью равносторонними треугольниками

Слайд 8





Если же добавить еще один, шестой треугольник, сумма углов станет равной 360° - эта развертка, очевидно, не может соответствовать ни одному выпуклому многограннику.
Если же добавить еще один, шестой треугольник, сумма углов станет равной 360° - эта развертка, очевидно, не может соответствовать ни одному выпуклому многограннику.
Описание слайда:
Если же добавить еще один, шестой треугольник, сумма углов станет равной 360° - эта развертка, очевидно, не может соответствовать ни одному выпуклому многограннику. Если же добавить еще один, шестой треугольник, сумма углов станет равной 360° - эта развертка, очевидно, не может соответствовать ни одному выпуклому многограннику.

Слайд 9





Куб или правильный гексаэдр
Теперь перейдем к квадратным граням. Развертка из трех квадратных граней имеет угол 3x90°=270° - получается вершина куба, который также называют гексаэдром. Добавление еще одного квадрата увеличит угол до 360° - этой развертке уже не соответствует никакой выпуклый многогранник.
Куб или правильный гексаэдр - правильная четырехугольная призма с равными ребрами, ограниченная шестью квадратами.
Описание слайда:
Куб или правильный гексаэдр Теперь перейдем к квадратным граням. Развертка из трех квадратных граней имеет угол 3x90°=270° - получается вершина куба, который также называют гексаэдром. Добавление еще одного квадрата увеличит угол до 360° - этой развертке уже не соответствует никакой выпуклый многогранник. Куб или правильный гексаэдр - правильная четырехугольная призма с равными ребрами, ограниченная шестью квадратами.

Слайд 10





Додекаэдр-
Три пятиугольные грани дают угол развертки 3*108°=324 - вершина додекаэдра. Если добавить еще один пятиугольник, получим больше 360° - поэтому останавливаемся.
Додекаэдр-двенадцатигранник, тело, ограниченное двенадцатью правильными многоугольниками.
Описание слайда:
Додекаэдр- Три пятиугольные грани дают угол развертки 3*108°=324 - вершина додекаэдра. Если добавить еще один пятиугольник, получим больше 360° - поэтому останавливаемся. Додекаэдр-двенадцатигранник, тело, ограниченное двенадцатью правильными многоугольниками.

Слайд 11





Для шестиугольников уже три грани дают угол развертки 3*120°=360°, поэтому правильного выпуклого многогранника с шестиугольными гранями не существует. Если же грань имеет еще больше углов, то развертка будет иметь еще больший угол. Значит, правильных выпуклых многогранников с гранями, имеющими шесть и более углов, не существует.
Для шестиугольников уже три грани дают угол развертки 3*120°=360°, поэтому правильного выпуклого многогранника с шестиугольными гранями не существует. Если же грань имеет еще больше углов, то развертка будет иметь еще больший угол. Значит, правильных выпуклых многогранников с гранями, имеющими шесть и более углов, не существует.
Описание слайда:
Для шестиугольников уже три грани дают угол развертки 3*120°=360°, поэтому правильного выпуклого многогранника с шестиугольными гранями не существует. Если же грань имеет еще больше углов, то развертка будет иметь еще больший угол. Значит, правильных выпуклых многогранников с гранями, имеющими шесть и более углов, не существует. Для шестиугольников уже три грани дают угол развертки 3*120°=360°, поэтому правильного выпуклого многогранника с шестиугольными гранями не существует. Если же грань имеет еще больше углов, то развертка будет иметь еще больший угол. Значит, правильных выпуклых многогранников с гранями, имеющими шесть и более углов, не существует.

Слайд 12





Сделаем вывод:

Мы убедились, что существует лишь пять выпуклых правильных многогранников - тетраэдр, октаэдр и икосаэдр с треугольными гранями, куб (гексаэдр) с квадратными гранями и додекаэдр с пятиугольными гранями. Названия этих многогранников пришли из Древней Греции, и в них указывается число граней: 
«эдра» - грань 
«тетра» - 4 
«гекса» - 6 
«окта» - 8 
«икоса» - 20 
«додека» - 12
Описание слайда:
Сделаем вывод: Мы убедились, что существует лишь пять выпуклых правильных многогранников - тетраэдр, октаэдр и икосаэдр с треугольными гранями, куб (гексаэдр) с квадратными гранями и додекаэдр с пятиугольными гранями. Названия этих многогранников пришли из Древней Греции, и в них указывается число граней: «эдра» - грань «тетра» - 4 «гекса» - 6 «окта» - 8 «икоса» - 20 «додека» - 12

Слайд 13


Правильные многогранники, слайд №13
Описание слайда:

Слайд 14





Теорема Эйлера. Пусть В --- число вершин выпуклого многогранника, Р --- число его
                                  рёбер и Г --- число граней. Тогда верно равенство   В+Г=2+Р
Описание слайда:
Теорема Эйлера. Пусть В --- число вершин выпуклого многогранника, Р --- число его рёбер и Г --- число граней. Тогда верно равенство В+Г=2+Р

Слайд 15





Эти тела еще называют телами Платона
Эти тела еще называют телами Платона
Платон связал с этими телами формы атомов основных стихий природы.
Описание слайда:
Эти тела еще называют телами Платона Эти тела еще называют телами Платона Платон связал с этими телами формы атомов основных стихий природы.

Слайд 16


Правильные многогранники, слайд №16
Описание слайда:

Слайд 17


Правильные многогранники, слайд №17
Описание слайда:

Слайд 18





Многогранники в природе
Правильные многогранники – самые выгодные фигуры. И природа этим широко пользуется. Подтверждением тому служит форма некоторых кристаллов.
Описание слайда:
Многогранники в природе Правильные многогранники – самые выгодные фигуры. И природа этим широко пользуется. Подтверждением тому служит форма некоторых кристаллов.

Слайд 19





Спасибо за внимание!
Описание слайда:
Спасибо за внимание!



Похожие презентации
Mypresentation.ru
Загрузить презентацию