🗊Франсуа Виет и его теорема - презентация по Алгебре

Категория: Алгебра
Нажмите для полного просмотра!
Франсуа Виет и его теорема - презентация по Алгебре, слайд №1Франсуа Виет и его теорема - презентация по Алгебре, слайд №2Франсуа Виет и его теорема - презентация по Алгебре, слайд №3Франсуа Виет и его теорема - презентация по Алгебре, слайд №4Франсуа Виет и его теорема - презентация по Алгебре, слайд №5Франсуа Виет и его теорема - презентация по Алгебре, слайд №6Франсуа Виет и его теорема - презентация по Алгебре, слайд №7Франсуа Виет и его теорема - презентация по Алгебре, слайд №8Франсуа Виет и его теорема - презентация по Алгебре, слайд №9Франсуа Виет и его теорема - презентация по Алгебре, слайд №10Франсуа Виет и его теорема - презентация по Алгебре, слайд №11Франсуа Виет и его теорема - презентация по Алгебре, слайд №12Франсуа Виет и его теорема - презентация по Алгебре, слайд №13Франсуа Виет и его теорема - презентация по Алгебре, слайд №14Франсуа Виет и его теорема - презентация по Алгебре, слайд №15Франсуа Виет и его теорема - презентация по Алгебре, слайд №16

Вы можете ознакомиться и скачать Франсуа Виет и его теорема - презентация по Алгебре. Презентация содержит 16 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1


Франсуа Виет и его теорема - презентация по Алгебре, слайд №1
Описание слайда:

Слайд 2


Франсуа Виет и его теорема - презентация по Алгебре, слайд №2
Описание слайда:

Слайд 3


Франсуа Виет и его теорема - презентация по Алгебре, слайд №3
Описание слайда:

Слайд 4


Франсуа Виет и его теорема - презентация по Алгебре, слайд №4
Описание слайда:

Слайд 5


Франсуа Виет и его теорема - презентация по Алгебре, слайд №5
Описание слайда:

Слайд 6


Франсуа Виет и его теорема - презентация по Алгебре, слайд №6
Описание слайда:

Слайд 7


Франсуа Виет и его теорема - презентация по Алгебре, слайд №7
Описание слайда:

Слайд 8


Франсуа Виет и его теорема - презентация по Алгебре, слайд №8
Описание слайда:

Слайд 9


Франсуа Виет и его теорема - презентация по Алгебре, слайд №9
Описание слайда:

Слайд 10





О создателе теоремы

     Франсуа Виет родился в 1540 году в  городе Фонтене ле-Конт провинции Пуату. Получив юридическое образование, он с девятнадцати лет успешно занимался адвокатской практикой в родном городе. Как адвокат Виет пользовался у населения авторитетом и уважением. Преподавая частным образом астрономию дочери одной знатной клиентки, Виет пришел к мысли составить труд, посвященный усовершенствованию птолемеевской системы.
Описание слайда:
О создателе теоремы Франсуа Виет родился в 1540 году в городе Фонтене ле-Конт провинции Пуату. Получив юридическое образование, он с девятнадцати лет успешно занимался адвокатской практикой в родном городе. Как адвокат Виет пользовался у населения авторитетом и уважением. Преподавая частным образом астрономию дочери одной знатной клиентки, Виет пришел к мысли составить труд, посвященный усовершенствованию птолемеевской системы.

Слайд 11






       Затем Виет приступил к разработке тригонометрии и приложению ее к решению алгебраических уравнений.
       В 1571 году Виет переехал в Париж и там познакомился с математиком Пьером Рамусом. Благодаря своему таланту и отчасти  благодаря браку своей бывшей ученицы с принцем де Роганом, Виет сделал блестящую карьеру и стал советником Генриха III, а после его смерти-Генриха IV.
Описание слайда:
Затем Виет приступил к разработке тригонометрии и приложению ее к решению алгебраических уравнений. В 1571 году Виет переехал в Париж и там познакомился с математиком Пьером Рамусом. Благодаря своему таланту и отчасти благодаря браку своей бывшей ученицы с принцем де Роганом, Виет сделал блестящую карьеру и стал советником Генриха III, а после его смерти-Генриха IV.

Слайд 12






Но главной страстью Виета была математика. Он глубоко изучил сочинения классиков Архимеда и Диофанта, ближайших предшественников Кардано, Бомбелли, Стевина и других. Почти все действия и знаки записывались словами, не было намека на те удобные, почти автоматические правила, которыми мы сейчас пользуемся.
Описание слайда:
Но главной страстью Виета была математика. Он глубоко изучил сочинения классиков Архимеда и Диофанта, ближайших предшественников Кардано, Бомбелли, Стевина и других. Почти все действия и знаки записывались словами, не было намека на те удобные, почти автоматические правила, которыми мы сейчас пользуемся.

Слайд 13






Каждый вид уравнения с числовыми коэффициентами решался по особому правилу. Так, например, у Кардано рассматривались 66 видов алгебраических уравнений. Поэтому необходимо было доказать, что существуют такие общие действия над всеми числами, которые от этих самих чисел не зависят. 
Виет и его последователи установили, что не имеет значения, будет ли рассматриваемое число количеством предметов или длиной отрезка.
Описание слайда:
Каждый вид уравнения с числовыми коэффициентами решался по особому правилу. Так, например, у Кардано рассматривались 66 видов алгебраических уравнений. Поэтому необходимо было доказать, что существуют такие общие действия над всеми числами, которые от этих самих чисел не зависят. Виет и его последователи установили, что не имеет значения, будет ли рассматриваемое число количеством предметов или длиной отрезка.

Слайд 14





Главное, что с этими числами можно производить алгебраические действия и в результате снова получать числа того же рода. Виет не только ввел свое буквенное исчисление, но сделал принципиально новое открытие, поставив перед собой цель изучать не числа, а действия над ними. Правда, у самого Виета алгебраические символы еще были мало похожи на наши. Например, современную запись уравнения X3+3bx=d Виет записывал так: 
Главное, что с этими числами можно производить алгебраические действия и в результате снова получать числа того же рода. Виет не только ввел свое буквенное исчисление, но сделал принципиально новое открытие, поставив перед собой цель изучать не числа, а действия над ними. Правда, у самого Виета алгебраические символы еще были мало похожи на наши. Например, современную запись уравнения X3+3bx=d Виет записывал так:
Описание слайда:
Главное, что с этими числами можно производить алгебраические действия и в результате снова получать числа того же рода. Виет не только ввел свое буквенное исчисление, но сделал принципиально новое открытие, поставив перед собой цель изучать не числа, а действия над ними. Правда, у самого Виета алгебраические символы еще были мало похожи на наши. Например, современную запись уравнения X3+3bx=d Виет записывал так: Главное, что с этими числами можно производить алгебраические действия и в результате снова получать числа того же рода. Виет не только ввел свое буквенное исчисление, но сделал принципиально новое открытие, поставив перед собой цель изучать не числа, а действия над ними. Правда, у самого Виета алгебраические символы еще были мало похожи на наши. Например, современную запись уравнения X3+3bx=d Виет записывал так:

Слайд 15





Такой способ  записи позволил Виету сделать важные открытия при изучении общих свойств алгебраических уравнений. Не случайно за это Виета называют «отцом» алгебры, основоположником буквенной символики. Особенно гордился Виет всем известной теперь теоремой о выражении коэффициентов уравнения через его корни, полученной им самостоятельно, хотя, как теперь стало известно, зависимость между коэффициентами и корнями уравнения была известна Кордано, а в таком виде, в каком мы пользуемся для квадратного уравнения, - древним вавилонянам. 
Такой способ  записи позволил Виету сделать важные открытия при изучении общих свойств алгебраических уравнений. Не случайно за это Виета называют «отцом» алгебры, основоположником буквенной символики. Особенно гордился Виет всем известной теперь теоремой о выражении коэффициентов уравнения через его корни, полученной им самостоятельно, хотя, как теперь стало известно, зависимость между коэффициентами и корнями уравнения была известна Кордано, а в таком виде, в каком мы пользуемся для квадратного уравнения, - древним вавилонянам.
Описание слайда:
Такой способ записи позволил Виету сделать важные открытия при изучении общих свойств алгебраических уравнений. Не случайно за это Виета называют «отцом» алгебры, основоположником буквенной символики. Особенно гордился Виет всем известной теперь теоремой о выражении коэффициентов уравнения через его корни, полученной им самостоятельно, хотя, как теперь стало известно, зависимость между коэффициентами и корнями уравнения была известна Кордано, а в таком виде, в каком мы пользуемся для квадратного уравнения, - древним вавилонянам. Такой способ записи позволил Виету сделать важные открытия при изучении общих свойств алгебраических уравнений. Не случайно за это Виета называют «отцом» алгебры, основоположником буквенной символики. Особенно гордился Виет всем известной теперь теоремой о выражении коэффициентов уравнения через его корни, полученной им самостоятельно, хотя, как теперь стало известно, зависимость между коэффициентами и корнями уравнения была известна Кордано, а в таком виде, в каком мы пользуемся для квадратного уравнения, - древним вавилонянам.

Слайд 16


Франсуа Виет и его теорема - презентация по Алгебре, слайд №16
Описание слайда:



Похожие презентации
Mypresentation.ru
Загрузить презентацию