🗊Специальные методы решения квадратных уравнений Выполнил...

Категория: Алгебра

Нажмите для полного просмотра!
Специальные методы решения квадратных уравнений  Выполнил..., слайд №1Специальные методы решения квадратных уравнений  Выполнил..., слайд №2Специальные методы решения квадратных уравнений  Выполнил..., слайд №3Специальные методы решения квадратных уравнений  Выполнил..., слайд №4Специальные методы решения квадратных уравнений  Выполнил..., слайд №5Специальные методы решения квадратных уравнений  Выполнил..., слайд №6Специальные методы решения квадратных уравнений  Выполнил..., слайд №7Специальные методы решения квадратных уравнений  Выполнил..., слайд №8Специальные методы решения квадратных уравнений  Выполнил..., слайд №9

Вы можете ознакомиться и скачать Специальные методы решения квадратных уравнений Выполнил.... Презентация содержит 9 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.


Слайды и текст этой презентации

Слайд 1



Специальные методы решения квадратных уравнений
Выполнил...
Описание слайда:
Специальные методы решения квадратных уравнений Выполнил...

Слайд 2



	Рассмотрим решение квадратных уравнений, коэффициенты которых обладают определенными свойствами. Установим связь между суммой коэффициентов уравнения и его корнями.
	Рассмотрим решение квадратных уравнений, коэффициенты которых обладают определенными свойствами. Установим связь между суммой коэффициентов уравнения и его корнями.
Описание слайда:
Рассмотрим решение квадратных уравнений, коэффициенты которых обладают определенными свойствами. Установим связь между суммой коэффициентов уравнения и его корнями. Рассмотрим решение квадратных уравнений, коэффициенты которых обладают определенными свойствами. Установим связь между суммой коэффициентов уравнения и его корнями.

Слайд 3



3)х²+6х+5=0,
3)х²+6х+5=0,
 а=1, b=6, с=5,
 а+c=b,
 x=-1, x=-5.
Описание слайда:
3)х²+6х+5=0, 3)х²+6х+5=0, а=1, b=6, с=5, а+c=b, x=-1, x=-5.

Слайд 4



	При решении уравнения ax²+bx+c=0 (a≠0) можно пользоваться следующими правилами.
	При решении уравнения ax²+bx+c=0 (a≠0) можно пользоваться следующими правилами.
1. Если а+b+c=0, то х=1, х=с/а
2. Если a+c=b, то х=-1, х=-с/а
Описание слайда:
При решении уравнения ax²+bx+c=0 (a≠0) можно пользоваться следующими правилами. При решении уравнения ax²+bx+c=0 (a≠0) можно пользоваться следующими правилами. 1. Если а+b+c=0, то х=1, х=с/а 2. Если a+c=b, то х=-1, х=-с/а

Слайд 5



Докажем утверждение 1.
Докажем утверждение 1.
Разделим обе части уравнения на(a≠0):
x²+(b/a)х+(c/a)=0.
По теореме Виета х1+х2=-b/a, х1*х2=c/a.
Так как а+b+c=0, то b=-a-c, тогда
х1+х2=-(-а-с)/а=1+c/a, х1*х2=1*c/a
значит, х1=1, х2=c/a
Утверждение 2 доказывается аналогично.
Описание слайда:
Докажем утверждение 1. Докажем утверждение 1. Разделим обе части уравнения на(a≠0): x²+(b/a)х+(c/a)=0. По теореме Виета х1+х2=-b/a, х1*х2=c/a. Так как а+b+c=0, то b=-a-c, тогда х1+х2=-(-а-с)/а=1+c/a, х1*х2=1*c/a значит, х1=1, х2=c/a Утверждение 2 доказывается аналогично.

Слайд 6



	Задание (устно).
	Задание (устно).
	Найдите корни уравнения:
	а) 3х²-8x+5=0;
	б) 2х²+3х+1=0;
	в) 5х²-9х-14=0;
	г) -х²+4х-3=0.
  Другой метод решения квадратных уравнений – метод «переброски» старшего коэффициента. Умножим обе части уравнения ax²+bx+c=0 на (a≠0):
  a²x²+bax+ca=0.
	Пусть ах=у, тогда получим уравнение у²+by+ca=0.
	Корни у1 и у2 уравнения найдем по теореме, обратной теореме Виета. Так как ах1=у1, ах2=у2,
	то х1=у1/а, х2=у2/а
Описание слайда:
Задание (устно). Задание (устно). Найдите корни уравнения: а) 3х²-8x+5=0; б) 2х²+3х+1=0; в) 5х²-9х-14=0; г) -х²+4х-3=0. Другой метод решения квадратных уравнений – метод «переброски» старшего коэффициента. Умножим обе части уравнения ax²+bx+c=0 на (a≠0): a²x²+bax+ca=0. Пусть ах=у, тогда получим уравнение у²+by+ca=0. Корни у1 и у2 уравнения найдем по теореме, обратной теореме Виета. Так как ах1=у1, ах2=у2, то х1=у1/а, х2=у2/а

Слайд 7



Пример.
Решите уравнение 2х²-11х+15=0.
Решение: Умножим обе части уравнения на 2:
2²*х²-2*11х+2*15=0.
Пусть 2х=у, тогда у²-11у+30=0.
Корни уравнения: у1=5, у2=6. Тогда 2х1=5, 2х2=6, 
откуда х1=5/2, х2=3.
Описание слайда:
Пример. Решите уравнение 2х²-11х+15=0. Решение: Умножим обе части уравнения на 2: 2²*х²-2*11х+2*15=0. Пусть 2х=у, тогда у²-11у+30=0. Корни уравнения: у1=5, у2=6. Тогда 2х1=5, 2х2=6, откуда х1=5/2, х2=3.

Слайд 8



Задание на дом.
	Решите уравнение, выбрав один из специальных методов решения квадратных уравнений:
а) 3х²-5x+2=0
б) 1907х²-101x-2008=0
Описание слайда:
Задание на дом. Решите уравнение, выбрав один из специальных методов решения квадратных уравнений: а) 3х²-5x+2=0 б) 1907х²-101x-2008=0

Слайд 9
Специальные методы решения квадратных уравнений  Выполнил..., слайд №9
Описание слайда:



Похожие презентации
Mypresentation.ru
Загрузить презентацию