🗊Презентация Binary Variables

Категория: Математика
Нажмите для полного просмотра!
Binary Variables, слайд №1Binary Variables, слайд №2Binary Variables, слайд №3Binary Variables, слайд №4Binary Variables, слайд №5Binary Variables, слайд №6Binary Variables, слайд №7Binary Variables, слайд №8Binary Variables, слайд №9Binary Variables, слайд №10Binary Variables, слайд №11Binary Variables, слайд №12Binary Variables, слайд №13Binary Variables, слайд №14Binary Variables, слайд №15Binary Variables, слайд №16Binary Variables, слайд №17Binary Variables, слайд №18Binary Variables, слайд №19Binary Variables, слайд №20Binary Variables, слайд №21Binary Variables, слайд №22Binary Variables, слайд №23Binary Variables, слайд №24Binary Variables, слайд №25Binary Variables, слайд №26Binary Variables, слайд №27Binary Variables, слайд №28Binary Variables, слайд №29Binary Variables, слайд №30Binary Variables, слайд №31Binary Variables, слайд №32Binary Variables, слайд №33Binary Variables, слайд №34Binary Variables, слайд №35Binary Variables, слайд №36Binary Variables, слайд №37Binary Variables, слайд №38Binary Variables, слайд №39Binary Variables, слайд №40Binary Variables, слайд №41Binary Variables, слайд №42Binary Variables, слайд №43Binary Variables, слайд №44Binary Variables, слайд №45Binary Variables, слайд №46Binary Variables, слайд №47Binary Variables, слайд №48Binary Variables, слайд №49Binary Variables, слайд №50Binary Variables, слайд №51Binary Variables, слайд №52Binary Variables, слайд №53Binary Variables, слайд №54Binary Variables, слайд №55Binary Variables, слайд №56

Содержание

Вы можете ознакомиться и скачать презентацию на тему Binary Variables. Доклад-сообщение содержит 56 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Binary Variables
Recall that the two binary values have different names:
True/False
On/Off
Yes/No
1/0
We use 1 and 0 to denote the two values.
Описание слайда:
Binary Variables Recall that the two binary values have different names: True/False On/Off Yes/No 1/0 We use 1 and 0 to denote the two values.

Слайд 2





Boolean Algebra
Invented by George Boole in 1854
An algebraic structure defined by a set B = {0, 1}, together with two binary operators (+ and ·) and a unary operator ( ¯ ),
Описание слайда:
Boolean Algebra Invented by George Boole in 1854 An algebraic structure defined by a set B = {0, 1}, together with two binary operators (+ and ·) and a unary operator ( ¯ ),

Слайд 3





Binary Logic and Gates
Binary variables take on one of two values.
Logical operators operate on binary values and binary variables.
Basic logical operators are the logic functions AND, OR and NOT.
Logic gates implement logic functions.
Boolean Algebra: a useful mathematical system for specifying and transforming logic functions.
We study Boolean algebra as a foundation for designing and analyzing digital systems!
Описание слайда:
Binary Logic and Gates Binary variables take on one of two values. Logical operators operate on binary values and binary variables. Basic logical operators are the logic functions AND, OR and NOT. Logic gates implement logic functions. Boolean Algebra: a useful mathematical system for specifying and transforming logic functions. We study Boolean algebra as a foundation for designing and analyzing digital systems!

Слайд 4





Logic Gates
In the earliest computers, switches were opened and closed by magnetic fields produced by energizing coils in relays. The switches in turn opened and closed the current paths.
Later, vacuum tubes that open and close current paths electronically replaced relays.
Today, transistors are used as electronic switches that open and close current paths.
Описание слайда:
Logic Gates In the earliest computers, switches were opened and closed by magnetic fields produced by energizing coils in relays. The switches in turn opened and closed the current paths. Later, vacuum tubes that open and close current paths electronically replaced relays. Today, transistors are used as electronic switches that open and close current paths.

Слайд 5





Logical Operations
The three basic logical operations are:
AND 
OR
NOT
AND is denoted by a dot (·). 
OR is denoted by a plus (+).
NOT is denoted by an overbar ( ¯ ), a single quote mark (') after, or (~) before the variable.
Описание слайда:
Logical Operations The three basic logical operations are: AND OR NOT AND is denoted by a dot (·). OR is denoted by a plus (+). NOT is denoted by an overbar ( ¯ ), a single quote mark (') after, or (~) before the variable.

Слайд 6





Truth Tables
Описание слайда:
Truth Tables

Слайд 7





Operator Definitions
Описание слайда:
Operator Definitions

Слайд 8





Produce a truth table l
In the BooleanAlgebra, verify using truth table that (X + Y)’ = X’Y’
In the Boolean Algebra, verify using truth table that X + XY = X
Описание слайда:
Produce a truth table l In the BooleanAlgebra, verify using truth table that (X + Y)’ = X’Y’ In the Boolean Algebra, verify using truth table that X + XY = X

Слайд 9





1. Write the boolean expression for the below circuit
Описание слайда:
1. Write the boolean expression for the below circuit

Слайд 10





2. Write the boolean expression for the below circuit
Описание слайда:
2. Write the boolean expression for the below circuit

Слайд 11





Problem 1
A system used 3 switches A,B and C; a combination of switches determines whether an alarm, X, sounds:
If switch A or Switch B are in the ON position and if switch C is in the OFF position then a signal to sound an alarm, X is produced.
Convert this problem into a logic statement.
Описание слайда:
Problem 1 A system used 3 switches A,B and C; a combination of switches determines whether an alarm, X, sounds: If switch A or Switch B are in the ON position and if switch C is in the OFF position then a signal to sound an alarm, X is produced. Convert this problem into a logic statement.

Слайд 12





Problem 2
A nuclear power station has a safety system based on three inputs to a logic circuit(network). A warning signal ( S = 1)  is produced when certain conditions in the nuclear power station occur based on these three inputs
A warning signal (S=1) will be produced when any of the following occurs.
Either (a) Temperature > 115 C and Cooling water <=120 litres/hour
or       (b) Temperature <=115 C  and when Reactor pressure > 15 bar
                or cooling water <= 120 litres/hour
Draw a logic circuit  and truth table to show all the possible situations when the warning signal (S) could be received.
Описание слайда:
Problem 2 A nuclear power station has a safety system based on three inputs to a logic circuit(network). A warning signal ( S = 1) is produced when certain conditions in the nuclear power station occur based on these three inputs A warning signal (S=1) will be produced when any of the following occurs. Either (a) Temperature > 115 C and Cooling water <=120 litres/hour or (b) Temperature <=115 C and when Reactor pressure > 15 bar or cooling water <= 120 litres/hour Draw a logic circuit and truth table to show all the possible situations when the warning signal (S) could be received.

Слайд 13





Logic Diagrams and Expressions
Описание слайда:
Logic Diagrams and Expressions

Слайд 14





Boolean Algebra
Описание слайда:
Boolean Algebra

Слайд 15





Some Properties of Boolean Algebra
Boolean Algebra is defined in general by a set B that can have more than two values
A two-valued Boolean algebra is also know as Switching Algebra. The Boolean set B is restricted to 0 and 1. Switching circuits can be represented by this algebra.
The dual of an algebraic expression is obtained by interchanging + and · and interchanging 0’s and 1’s. 
The identities appear in dual pairs. When there is only one identity on a line the identity is self-dual, i. e., the dual expression = the original expression. 
Sometimes, the dot symbol ‘’ (AND operator) is not written when the meaning is clear.
Описание слайда:
Some Properties of Boolean Algebra Boolean Algebra is defined in general by a set B that can have more than two values A two-valued Boolean algebra is also know as Switching Algebra. The Boolean set B is restricted to 0 and 1. Switching circuits can be represented by this algebra. The dual of an algebraic expression is obtained by interchanging + and · and interchanging 0’s and 1’s. The identities appear in dual pairs. When there is only one identity on a line the identity is self-dual, i. e., the dual expression = the original expression. Sometimes, the dot symbol ‘’ (AND operator) is not written when the meaning is clear.

Слайд 16





Dual of a Boolean Expression
Example: F = (A + C) · B + 0
             dual F =  (A · C + B) · 1 = A · C  + B

Example: G = X · Y + (W + Z)
             dual G = (X+Y) · (W · Z) = (X+Y) · (W+Z)

Example: H = A · B + A · C + B · C
		   dual H = (A+B) · (A+C) · (B+C)
Описание слайда:
Dual of a Boolean Expression Example: F = (A + C) · B + 0 dual F = (A · C + B) · 1 = A · C + B Example: G = X · Y + (W + Z) dual G = (X+Y) · (W · Z) = (X+Y) · (W+Z) Example: H = A · B + A · C + B · C dual H = (A+B) · (A+C) · (B+C)

Слайд 17





Boolean Algebraic Proof – Example 1
A + A · B = A	 (Absorption Theorem)
Proof Steps	Justification
    A + A · B
= A · 1 + A · B	Identity element: A · 1 = A
= A · ( 1 + B)	Distributive
= A · 1 	1 + B = 1
= A	Identity element

Our primary reason for doing proofs is to learn:
Careful and efficient use of the identities and theorems of Boolean algebra, and
How to choose the appropriate identity or theorem to apply to make forward progress, irrespective of the application.
Описание слайда:
Boolean Algebraic Proof – Example 1 A + A · B = A (Absorption Theorem) Proof Steps Justification A + A · B = A · 1 + A · B Identity element: A · 1 = A = A · ( 1 + B) Distributive = A · 1 1 + B = 1 = A Identity element Our primary reason for doing proofs is to learn: Careful and efficient use of the identities and theorems of Boolean algebra, and How to choose the appropriate identity or theorem to apply to make forward progress, irrespective of the application.

Слайд 18





Boolean Algebraic Proof – Example 2
Описание слайда:
Boolean Algebraic Proof – Example 2

Слайд 19





Proof
Описание слайда:
Proof

Слайд 20





Minimization of Boolean Expression
Описание слайда:
Minimization of Boolean Expression

Слайд 21





Simplification of Boolean Algebra
(A + B)(A + C) = A + BC
This rule can be proved as follows:
(A + B)(A + C) = AA + AC + AB + BC( Distributive law)
		= A + AC + AB + BC	 ( AA = A)
		= A( 1 + C) + AB + BC	 (1 + C = 1)
		= A. 1 + AB + BC 	
		= A(1 + B) + BC 		(1 + B = 1)
		= A. 1 + BC 			( A . 1 = A)
		= A + BC
Описание слайда:
Simplification of Boolean Algebra (A + B)(A + C) = A + BC This rule can be proved as follows: (A + B)(A + C) = AA + AC + AB + BC( Distributive law) = A + AC + AB + BC ( AA = A) = A( 1 + C) + AB + BC (1 + C = 1) = A. 1 + AB + BC = A(1 + B) + BC (1 + B = 1) = A. 1 + BC ( A . 1 = A) = A + BC

Слайд 22





Logic Diagram
Описание слайда:
Logic Diagram

Слайд 23





Useful Theorems
Описание слайда:
Useful Theorems

Слайд 24





De morgan’s Law
Описание слайда:
De morgan’s Law

Слайд 25





Gate equivalencies and the corresponding truth tables that illustrate 
De Morgan's theorems.
Описание слайда:
Gate equivalencies and the corresponding truth tables that illustrate De Morgan's theorems.

Слайд 26





Truth Table to Verify De Morgan’s
Описание слайда:
Truth Table to Verify De Morgan’s

Слайд 27





Simplification-Example
Using Boolean algebra techniques, simplify this expression:
	AB + A(B + C) + B(B + C)
Step 1: Apply the distributive law to the second and third terms in the expression, as follows:
		AB + AB + AC + BB + BC
Step 2: Apply (BB = B) to the fourth term.
		AB + AB + AC + B + BC
Step 3: Apply (AB + AB = AB) to the first two terms.
		AB + AC + B + BC
Step 4: Apply (B + BC = B) to the last two terms.
		AB + AC + B
Step 5: Apply (AB + B = B) to the first and third terms.
		B+AC
Описание слайда:
Simplification-Example Using Boolean algebra techniques, simplify this expression: AB + A(B + C) + B(B + C) Step 1: Apply the distributive law to the second and third terms in the expression, as follows: AB + AB + AC + BB + BC Step 2: Apply (BB = B) to the fourth term. AB + AB + AC + B + BC Step 3: Apply (AB + AB = AB) to the first two terms. AB + AC + B + BC Step 4: Apply (B + BC = B) to the last two terms. AB + AC + B Step 5: Apply (AB + B = B) to the first and third terms. B+AC

Слайд 28


Binary Variables, слайд №28
Описание слайда:

Слайд 29





Truth Tables – Cont’d
Описание слайда:
Truth Tables – Cont’d

Слайд 30





Logic Diagram
Описание слайда:
Logic Diagram

Слайд 31





Logic Diagram
Описание слайда:
Logic Diagram

Слайд 32





Logic Diagram
Описание слайда:
Logic Diagram

Слайд 33





Logic Diagram
Описание слайда:
Logic Diagram

Слайд 34





Expression Simplification
Описание слайда:
Expression Simplification

Слайд 35





Canonical Forms…..
Minterms and Maxterms
Sum-of-products (SOP) Canonical Form
Product-of-sum (POS) Canonical Form
Representation of Complements of Functions
Conversions between Representations
Описание слайда:
Canonical Forms….. Minterms and Maxterms Sum-of-products (SOP) Canonical Form Product-of-sum (POS) Canonical Form Representation of Complements of Functions Conversions between Representations

Слайд 36





Minterms
Описание слайда:
Minterms

Слайд 37





Maxterms
Описание слайда:
Maxterms

Слайд 38





Minterms & Maxterms for 2 variables
Описание слайда:
Minterms & Maxterms for 2 variables

Слайд 39





Minterms & Maxterms for 3 variables
Описание слайда:
Minterms & Maxterms for 3 variables

Слайд 40





The Standard SOP Form
A standard SOP expression is one in which all the variables in the domain appear in each product term in the expression.
Example: 
Standard SOP expressions are important in: 
Constructing truth tables
The Karnaugh map simplification method
Описание слайда:
The Standard SOP Form A standard SOP expression is one in which all the variables in the domain appear in each product term in the expression. Example: Standard SOP expressions are important in: Constructing truth tables The Karnaugh map simplification method

Слайд 41





Converting Product Terms to Standard SOP (example)
Convert the following Boolean expression into standard SOP form:
Описание слайда:
Converting Product Terms to Standard SOP (example) Convert the following Boolean expression into standard SOP form:

Слайд 42





Sum-Of- Product (SOP)
Описание слайда:
Sum-Of- Product (SOP)

Слайд 43





Sum-Of-Minterm Examples
Описание слайда:
Sum-Of-Minterm Examples

Слайд 44





Implementation of an SOP
AND/OR implementation
Описание слайда:
Implementation of an SOP AND/OR implementation

Слайд 45





The Standard POS Form
A standard POS expression is one in which all the variables in the domain appear in each sum term in the expression.
Example: 
Standard POS expressions are important in: 
Constructing truth tables
The Karnaugh map simplification method
Описание слайда:
The Standard POS Form A standard POS expression is one in which all the variables in the domain appear in each sum term in the expression. Example: Standard POS expressions are important in: Constructing truth tables The Karnaugh map simplification method

Слайд 46





Converting a Sum Term to Standard POS (example)
Convert the following Boolean expression into standard POS form:
Описание слайда:
Converting a Sum Term to Standard POS (example) Convert the following Boolean expression into standard POS form:

Слайд 47





Product-Of-Maxterm (POM)
Описание слайда:
Product-Of-Maxterm (POM)

Слайд 48





Product-Of-Maxterm Examples
Описание слайда:
Product-Of-Maxterm Examples

Слайд 49





Converting to Sum-of-Minterms Form
Описание слайда:
Converting to Sum-of-Minterms Form

Слайд 50





Converting to Product-of-Maxterms Form
Описание слайда:
Converting to Product-of-Maxterms Form

Слайд 51





Conversions Between Canonical Forms
Описание слайда:
Conversions Between Canonical Forms

Слайд 52





Standard Sum-of-Products (SOP)
Описание слайда:
Standard Sum-of-Products (SOP)

Слайд 53





Three-way light control
Описание слайда:
Three-way light control

Слайд 54





Three-way light control
Описание слайда:
Three-way light control

Слайд 55





Car safety alarm
Описание слайда:
Car safety alarm

Слайд 56


Binary Variables, слайд №56
Описание слайда:



Теги Binary Variables
Похожие презентации
Mypresentation.ru
Загрузить презентацию