🗊Презентация Cmpe 466 computer graphics. 3D geometric transformations. (Сhapter 9)

Категория: Математика
Нажмите для полного просмотра!
Cmpe 466 computer graphics. 3D geometric transformations. (Сhapter 9), слайд №1Cmpe 466 computer graphics. 3D geometric transformations. (Сhapter 9), слайд №2Cmpe 466 computer graphics. 3D geometric transformations. (Сhapter 9), слайд №3Cmpe 466 computer graphics. 3D geometric transformations. (Сhapter 9), слайд №4Cmpe 466 computer graphics. 3D geometric transformations. (Сhapter 9), слайд №5Cmpe 466 computer graphics. 3D geometric transformations. (Сhapter 9), слайд №6Cmpe 466 computer graphics. 3D geometric transformations. (Сhapter 9), слайд №7Cmpe 466 computer graphics. 3D geometric transformations. (Сhapter 9), слайд №8Cmpe 466 computer graphics. 3D geometric transformations. (Сhapter 9), слайд №9Cmpe 466 computer graphics. 3D geometric transformations. (Сhapter 9), слайд №10Cmpe 466 computer graphics. 3D geometric transformations. (Сhapter 9), слайд №11Cmpe 466 computer graphics. 3D geometric transformations. (Сhapter 9), слайд №12Cmpe 466 computer graphics. 3D geometric transformations. (Сhapter 9), слайд №13Cmpe 466 computer graphics. 3D geometric transformations. (Сhapter 9), слайд №14Cmpe 466 computer graphics. 3D geometric transformations. (Сhapter 9), слайд №15Cmpe 466 computer graphics. 3D geometric transformations. (Сhapter 9), слайд №16Cmpe 466 computer graphics. 3D geometric transformations. (Сhapter 9), слайд №17Cmpe 466 computer graphics. 3D geometric transformations. (Сhapter 9), слайд №18Cmpe 466 computer graphics. 3D geometric transformations. (Сhapter 9), слайд №19Cmpe 466 computer graphics. 3D geometric transformations. (Сhapter 9), слайд №20Cmpe 466 computer graphics. 3D geometric transformations. (Сhapter 9), слайд №21Cmpe 466 computer graphics. 3D geometric transformations. (Сhapter 9), слайд №22Cmpe 466 computer graphics. 3D geometric transformations. (Сhapter 9), слайд №23Cmpe 466 computer graphics. 3D geometric transformations. (Сhapter 9), слайд №24

Вы можете ознакомиться и скачать презентацию на тему Cmpe 466 computer graphics. 3D geometric transformations. (Сhapter 9). Доклад-сообщение содержит 24 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





CMPE 466
COMPUTER GRAPHICS
Chapter 9
3D Geometric Transformations
Instructor: D. Arifler
Описание слайда:
CMPE 466 COMPUTER GRAPHICS Chapter 9 3D Geometric Transformations Instructor: D. Arifler

Слайд 2





3D translation
Описание слайда:
3D translation

Слайд 3





3D rotation
Описание слайда:
3D rotation

Слайд 4





3D z-axis rotation
Описание слайда:
3D z-axis rotation

Слайд 5





Rotations
To obtain rotations about other two axes
x  y   z   x
E.g. x-axis rotation
E.g. y-axis rotation
Описание слайда:
Rotations To obtain rotations about other two axes x  y  z  x E.g. x-axis rotation E.g. y-axis rotation

Слайд 6





General 3D rotations
Описание слайда:
General 3D rotations

Слайд 7





Arbitrary rotations
Описание слайда:
Arbitrary rotations

Слайд 8





Arbitrary rotations
Описание слайда:
Arbitrary rotations

Слайд 9





Rotations
Описание слайда:
Rotations

Слайд 10





Rotations
Описание слайда:
Rotations

Слайд 11





Rotations
Two steps for putting the rotation axis onto the z-axis
Rotate about the x-axis
Rotate about the y-axis
Описание слайда:
Rotations Two steps for putting the rotation axis onto the z-axis Rotate about the x-axis Rotate about the y-axis

Слайд 12





Rotations
Projection of u in the yz plane
Cosine of the rotation angle
	where
Similarly, sine of rotation angle can be determined from the cross-product
Описание слайда:
Rotations Projection of u in the yz plane Cosine of the rotation angle where Similarly, sine of rotation angle can be determined from the cross-product

Слайд 13





Rotations
Equating the right sides
	where |u’|=d
Then,
Описание слайда:
Rotations Equating the right sides where |u’|=d Then,

Слайд 14





Rotations
Next, swing the unit vector in the xz plane counter-clockwise around the y-axis onto the positive z-axis
Описание слайда:
Rotations Next, swing the unit vector in the xz plane counter-clockwise around the y-axis onto the positive z-axis

Слайд 15





Rotations
Описание слайда:
Rotations

Слайд 16





Rotations
Описание слайда:
Rotations

Слайд 17





In general
Описание слайда:
In general

Слайд 18





Quaternions
Scalar part and vector part
Think of it as a higher-order complex number
Rotation about any axis passing through the coordinate origin is accomplished by first setting up a unit quaternion
	where u is a unit vector along the selected rotation axis and θ is the specified rotation angle
Any point P in quaternion notation is P=(0, p) where p=(x, y, z)
Описание слайда:
Quaternions Scalar part and vector part Think of it as a higher-order complex number Rotation about any axis passing through the coordinate origin is accomplished by first setting up a unit quaternion where u is a unit vector along the selected rotation axis and θ is the specified rotation angle Any point P in quaternion notation is P=(0, p) where p=(x, y, z)

Слайд 19





Quaternions
The rotation of the point P is carried out with quaternion operation		       where 
This produces P’=(0, p’) where 
Many computer graphics systems use efficient hardware implementations of these vector calculations to perform rapid three-dimensional object rotations.
Noting that v=(a, b, c), we obtain the elements for the composite rotation matrix. We then have
Описание слайда:
Quaternions The rotation of the point P is carried out with quaternion operation where This produces P’=(0, p’) where Many computer graphics systems use efficient hardware implementations of these vector calculations to perform rapid three-dimensional object rotations. Noting that v=(a, b, c), we obtain the elements for the composite rotation matrix. We then have

Слайд 20





Quaternions
Using 
With u=(ux, uy, uz), we finally have
About an arbitrarily placed rotation axis:
Quaternions require less storage space than 4 × 4 matrices, and it is simpler to write quaternion procedures for transformation sequences.
This is particularly important in animations, which often require complicated motion sequences and motion interpolations between two given positions of an object.
Описание слайда:
Quaternions Using With u=(ux, uy, uz), we finally have About an arbitrarily placed rotation axis: Quaternions require less storage space than 4 × 4 matrices, and it is simpler to write quaternion procedures for transformation sequences. This is particularly important in animations, which often require complicated motion sequences and motion interpolations between two given positions of an object.

Слайд 21





3D scaling
Описание слайда:
3D scaling

Слайд 22





3D scaling
Описание слайда:
3D scaling

Слайд 23





Composite 3D transformation example
Описание слайда:
Composite 3D transformation example

Слайд 24





Transformations between 3D coordinate systems
Описание слайда:
Transformations between 3D coordinate systems



Похожие презентации
Mypresentation.ru
Загрузить презентацию