🗊Презентация Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large)

Категория: Математика
Нажмите для полного просмотра!
Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №1Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №2Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №3Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №4Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №5Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №6Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №7Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №8Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №9Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №10Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №11Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №12Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №13Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №14Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №15Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №16Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №17Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №18Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №19Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №20Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №21Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №22Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №23Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №24Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №25Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №26Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №27Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №28Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №29Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №30Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №31Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №32Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №33Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №34Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №35Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №36Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №37Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №38Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №39Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №40Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №41Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №42Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №43Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №44Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №45Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №46Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №47Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №48Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №49Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №50Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №51Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №52Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №53Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №54Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №55Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №56

Содержание

Вы можете ознакомиться и скачать презентацию на тему Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large). Доклад-сообщение содержит 56 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





NUFYP Mathematics & Computing Science 
Pre-Calculus Course


L21 Confidence interval and 
Hypothesis testing for population mean (µ) 
when       is known and n (large)
Описание слайда:
NUFYP Mathematics & Computing Science Pre-Calculus Course L21 Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large)

Слайд 2





Lecture overview: Learning outcomes
At the end of this lecture you should be able to:

7.6.1 Calculate and interpret confidence intervals for a population parameter

7.6.2 Test the hypothesis for a mean of a normal distribution, 
			Ho: µ=k, 
			H1: µ≠k or µ>k or µ<k
Описание слайда:
Lecture overview: Learning outcomes At the end of this lecture you should be able to: 7.6.1 Calculate and interpret confidence intervals for a population parameter 7.6.2 Test the hypothesis for a mean of a normal distribution, Ho: µ=k, H1: µ≠k or µ>k or µ<k

Слайд 3





Lecture overview: Learning outcomes
At the end of this lecture you should be able to:

7.6.3 Test the hypothesis for the difference between means of two independent normal distributions 
                Ho: µx - µy=0, 
	      H1: µx - µy≠0 or µx - µy<0 or µx - µy>0
Описание слайда:
Lecture overview: Learning outcomes At the end of this lecture you should be able to: 7.6.3 Test the hypothesis for the difference between means of two independent normal distributions Ho: µx - µy=0, H1: µx - µy≠0 or µx - µy<0 or µx - µy>0

Слайд 4





Textbook Reference
The content of this lecture is from the following textbook:
Chapter 3
Statistics 3 Edexcel AS and A Level Modular Mathematics S3 published by Pearson Education Limited
ISBN 978 0 435519 14 8
Further examples can be found in the textbook.
Описание слайда:
Textbook Reference The content of this lecture is from the following textbook: Chapter 3 Statistics 3 Edexcel AS and A Level Modular Mathematics S3 published by Pearson Education Limited ISBN 978 0 435519 14 8 Further examples can be found in the textbook.

Слайд 5





Terminology
  A range of values constructed so that there is a specified  probability of including the true value of a parameter within it
Описание слайда:
Terminology A range of values constructed so that there is a specified probability of including the true value of a parameter within it

Слайд 6





Terminology
Probability of including the true value of a parameter  within a confidence interval
Percentage
Описание слайда:
Terminology Probability of including the true value of a parameter within a confidence interval Percentage

Слайд 7





Terminology
Two extreme measurements within which an observation lies

End points of the confidence interval 

Larger confidence – Wider interval
Описание слайда:
Terminology Two extreme measurements within which an observation lies End points of the confidence interval Larger confidence – Wider interval

Слайд 8





Estimation of population parameters

Point estimate        Interval estimate
Описание слайда:
Estimation of population parameters Point estimate Interval estimate

Слайд 9





Point estimate VS Interval estimate
Point estimate
Описание слайда:
Point estimate VS Interval estimate Point estimate

Слайд 10





Point estimate VS Interval estimate
Point estimate
Описание слайда:
Point estimate VS Interval estimate Point estimate

Слайд 11





Point estimate VS Interval estimate
Описание слайда:
Point estimate VS Interval estimate

Слайд 12





Point estimate VS Interval estimate
Point estimate
Описание слайда:
Point estimate VS Interval estimate Point estimate

Слайд 13





Point estimate VS Interval estimate
Point estimate
Описание слайда:
Point estimate VS Interval estimate Point estimate

Слайд 14





7.5.1 Calculate and interpret confidence intervals for a population parameter
Interval estimate provides us interval within which we believe value of true population mean falls
Then by using Standard Normal Distribution we can consider specific level of confidence that µ is really there by adjusting critical coefficient
Описание слайда:
7.5.1 Calculate and interpret confidence intervals for a population parameter Interval estimate provides us interval within which we believe value of true population mean falls Then by using Standard Normal Distribution we can consider specific level of confidence that µ is really there by adjusting critical coefficient

Слайд 15





The general formula for all confidence intervals are:
Описание слайда:
The general formula for all confidence intervals are:

Слайд 16





7.5.1 Calculate and interpret confidence intervals for a population parameter
Описание слайда:
7.5.1 Calculate and interpret confidence intervals for a population parameter

Слайд 17


Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №17
Описание слайда:

Слайд 18


Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №18
Описание слайда:

Слайд 19





95% Confidence Interval of the Mean
Описание слайда:
95% Confidence Interval of the Mean

Слайд 20





Common Levels of Confidence
Описание слайда:
Common Levels of Confidence

Слайд 21





Formula for the Confidence Interval of the Mean for a Specific a
Описание слайда:
Formula for the Confidence Interval of the Mean for a Specific a

Слайд 22





7.5.1 Calculate and interpret confidence intervals for a population parameter
Описание слайда:
7.5.1 Calculate and interpret confidence intervals for a population parameter

Слайд 23





7.5.1 Calculate and interpret confidence intervals for a population parameter
Описание слайда:
7.5.1 Calculate and interpret confidence intervals for a population parameter

Слайд 24





7.5.1 Calculate and interpret confidence intervals for a population parameter
Описание слайда:
7.5.1 Calculate and interpret confidence intervals for a population parameter

Слайд 25





7.5.1 Calculate and interpret confidence intervals for a population parameter
Описание слайда:
7.5.1 Calculate and interpret confidence intervals for a population parameter

Слайд 26





7.5.2 Test the hypothesis for a mean of a normal distribution
Hypothesis testing as well as estimation is a method used to reach a conclusion on population parameter by using sample statistics.  
Описание слайда:
7.5.2 Test the hypothesis for a mean of a normal distribution Hypothesis testing as well as estimation is a method used to reach a conclusion on population parameter by using sample statistics.  

Слайд 27





7.5.2 Test the hypothesis for a mean of a normal distribution
In Hypothesis testing beside sample statistics level of significance (α) is used to make a meaningful conclusion.
Описание слайда:
7.5.2 Test the hypothesis for a mean of a normal distribution In Hypothesis testing beside sample statistics level of significance (α) is used to make a meaningful conclusion.

Слайд 28





The level of significance, a, is a probability and is, in reality, the probability of rejecting a true null hypothesis.  
The level of significance, a, is a probability and is, in reality, the probability of rejecting a true null hypothesis.  
Confidence level 
C = (1- a)

Level of Significance  
a =  1 - C
Описание слайда:
The level of significance, a, is a probability and is, in reality, the probability of rejecting a true null hypothesis.  The level of significance, a, is a probability and is, in reality, the probability of rejecting a true null hypothesis.  Confidence level C = (1- a) Level of Significance  a =  1 - C

Слайд 29





7.5.2 Test the hypothesis for a mean of a normal distribution
In Hypothesis testing we compare a sample statistic to a population parameter to see if there is a significant difference.
Описание слайда:
7.5.2 Test the hypothesis for a mean of a normal distribution In Hypothesis testing we compare a sample statistic to a population parameter to see if there is a significant difference.

Слайд 30


Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №30
Описание слайда:

Слайд 31


Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №31
Описание слайда:

Слайд 32





Types of Hypothesis testing
Null Hypothesis (H0) 
 Alternative Hypothesis (Ha or H1)
Each of the following statements is an example of a null hypothesis and corresponding alternative hypothesis.
Описание слайда:
Types of Hypothesis testing Null Hypothesis (H0) Alternative Hypothesis (Ha or H1) Each of the following statements is an example of a null hypothesis and corresponding alternative hypothesis.

Слайд 33


Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №33
Описание слайда:

Слайд 34


Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №34
Описание слайда:

Слайд 35


Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №35
Описание слайда:

Слайд 36


Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №36
Описание слайда:

Слайд 37





One-tailed test (left-tailed)
Описание слайда:
One-tailed test (left-tailed)

Слайд 38





One-tailed test (right-tailed)
Описание слайда:
One-tailed test (right-tailed)

Слайд 39





Two-tailed test
Описание слайда:
Two-tailed test

Слайд 40





7.5.2 Test the hypothesis for a mean of a normal distribution, Ho: µ=k, H1: µ≠k or µ>k or µ<k
Описание слайда:
7.5.2 Test the hypothesis for a mean of a normal distribution, Ho: µ=k, H1: µ≠k or µ>k or µ<k

Слайд 41


Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №41
Описание слайда:

Слайд 42


Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №42
Описание слайда:

Слайд 43


Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №43
Описание слайда:

Слайд 44


Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №44
Описание слайда:

Слайд 45


Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №45
Описание слайда:

Слайд 46


Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №46
Описание слайда:

Слайд 47


Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №47
Описание слайда:

Слайд 48





7.5.2 Test the hypothesis for a mean of a normal distribution, Ho: µ=k, H1: µ≠k or µ>k or µ<k
Описание слайда:
7.5.2 Test the hypothesis for a mean of a normal distribution, Ho: µ=k, H1: µ≠k or µ>k or µ<k

Слайд 49


Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №49
Описание слайда:

Слайд 50


Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №50
Описание слайда:

Слайд 51


Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №51
Описание слайда:

Слайд 52





7.5.3 Test the hypothesis for the difference between means of two independent normal distributions
Описание слайда:
7.5.3 Test the hypothesis for the difference between means of two independent normal distributions

Слайд 53





7.5.3 Test the hypothesis for the difference between means of two independent normal distributions
Описание слайда:
7.5.3 Test the hypothesis for the difference between means of two independent normal distributions

Слайд 54





7.5.3 Test the hypothesis for the difference between means of two independent normal distributions
Описание слайда:
7.5.3 Test the hypothesis for the difference between means of two independent normal distributions

Слайд 55


Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №55
Описание слайда:

Слайд 56


Confidence interval and Hypothesis testing for population mean (µ) when is known and n (large), слайд №56
Описание слайда:



Похожие презентации
Mypresentation.ru
Загрузить презентацию