🗊Презентация Confidence interval estimation

Категория: Математика
Нажмите для полного просмотра!
/ 34

Вы можете ознакомиться и скачать презентацию на тему Confidence interval estimation. Доклад-сообщение содержит 34 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Confidence Interval Estimation
Описание слайда:
Confidence Interval Estimation

Слайд 2





Types of Estimates
Point Estimate
A single number used to estimate an unknown population parameter
Interval Estimate
A range of values used to estimate a population parameter
Characteristics
Better idea of reliability of estimate
Decision making is facilitated
Описание слайда:
Types of Estimates Point Estimate A single number used to estimate an unknown population parameter Interval Estimate A range of values used to estimate a population parameter Characteristics Better idea of reliability of estimate Decision making is facilitated

Слайд 3





Point Estimates
Описание слайда:
Point Estimates

Слайд 4





Point and Interval Estimates
A point estimate is a single number, 
a confidence interval provides additional information about variability
Описание слайда:
Point and Interval Estimates A point estimate is a single number, a confidence interval provides additional information about variability

Слайд 5





Confidence Interval Estimate
An interval gives a range of values:
Takes into consideration the variation in sample statistics from sample to sample
Based on observation from 1 sample
Gives information about closeness to unknown population parameters
Stated in terms of level of confidence
Can never be 100% confident
Описание слайда:
Confidence Interval Estimate An interval gives a range of values: Takes into consideration the variation in sample statistics from sample to sample Based on observation from 1 sample Gives information about closeness to unknown population parameters Stated in terms of level of confidence Can never be 100% confident

Слайд 6





Confidence Level, (1-)
Suppose confidence level γ = 95%   
Also written γ =(1 - ) = .95
Where  is the risk of being wrong
A relative frequency interpretation:
In the long run, 95% of all the confidence intervals that can be constructed will contain the unknown parameter
A specific interval either will contain or will not contain the true parameter
No probability involved in a specific interval
Описание слайда:
Confidence Level, (1-) Suppose confidence level γ = 95% Also written γ =(1 - ) = .95 Where  is the risk of being wrong A relative frequency interpretation: In the long run, 95% of all the confidence intervals that can be constructed will contain the unknown parameter A specific interval either will contain or will not contain the true parameter No probability involved in a specific interval

Слайд 7





Estimation Process
Описание слайда:
Estimation Process

Слайд 8





General Formula
The general formula for all confidence intervals is:
Описание слайда:
General Formula The general formula for all confidence intervals is:

Слайд 9





Confidence Intervals
Описание слайда:
Confidence Intervals

Слайд 10





Confidence Interval for μ  
(σ  Known) 
Assumptions
Population standard deviation σ is known
Population is normally distributed
If population is not normal, use large sample
Confidence interval estimate for μ
Описание слайда:
Confidence Interval for μ (σ Known) Assumptions Population standard deviation σ is known Population is normally distributed If population is not normal, use large sample Confidence interval estimate for μ

Слайд 11





Finding the Critical Value
Описание слайда:
Finding the Critical Value

Слайд 12





Finding the Critical Value
Consider a 95% confidence interval:
Описание слайда:
Finding the Critical Value Consider a 95% confidence interval:

Слайд 13





Margin of Error
Margin of Error (e):  the amount added and subtracted to the point estimate to form the confidence interval
Описание слайда:
Margin of Error Margin of Error (e): the amount added and subtracted to the point estimate to form the confidence interval

Слайд 14





Factors Affecting 
Margin of Error
Data variation, σ :         		e      	as  σ    
Sample size, n :           		e     	as  n  
Level of confidence, 1 -  : 	e     	if  γ =1 - 
Описание слайда:
Factors Affecting Margin of Error Data variation, σ : e as σ Sample size, n : e as n Level of confidence, 1 -  : e if γ =1 - 

Слайд 15





Example
Example
A sample of 11 circuits from a large normal population has a mean resistance of 2.20 ohms.  We know from past testing that the population standard deviation is .35 ohms.  
Determine a 95% confidence interval for the true mean resistance of the population.
Описание слайда:
Example Example A sample of 11 circuits from a large normal population has a mean resistance of 2.20 ohms. We know from past testing that the population standard deviation is .35 ohms. Determine a 95% confidence interval for the true mean resistance of the population.

Слайд 16





Solution –
Описание слайда:
Solution –

Слайд 17





Interpretation
We are γ=95% confident that the true mean resistance is between 1.9932  and  2.4068 ohms
Описание слайда:
Interpretation We are γ=95% confident that the true mean resistance is between 1.9932 and 2.4068 ohms

Слайд 18





Confidence Interval for μ
(σ Unknown) 
If the population standard deviation  σ  is unknown, we can substitute the sample standard deviation, s as an estimate
In these case the t-distribution is used instead of the normal distribution
Описание слайда:
Confidence Interval for μ (σ Unknown) If the population standard deviation σ is unknown, we can substitute the sample standard deviation, s as an estimate In these case the t-distribution is used instead of the normal distribution

Слайд 19





Student’s t Distribution
Описание слайда:
Student’s t Distribution

Слайд 20





Confidence Interval for μ
(σ Unknown) 
Assumptions
Population standard deviation is unknown
Population is not highly skewed 
Population is normally distributed or the sample size is large (>30)
Use Student’s t  Distribution
Описание слайда:
Confidence Interval for μ (σ Unknown) Assumptions Population standard deviation is unknown Population is not highly skewed Population is normally distributed or the sample size is large (>30) Use Student’s t Distribution

Слайд 21






Confidence Interval Estimate:
where t is the critical value of the t-distribution with n-1 degrees of freedom and an area of α/2 in each tail)
Описание слайда:
Confidence Interval Estimate: where t is the critical value of the t-distribution with n-1 degrees of freedom and an area of α/2 in each tail)

Слайд 22





Define t  from equation
  – Confidence Coefficient. 
t - obtain with using Excel function TINV.
 t = TINV(1- γ; n-1) 
=T.INV.2T (1- γ; n-1)
Описание слайда:
Define t from equation  – Confidence Coefficient. t - obtain with using Excel function TINV. t = TINV(1- γ; n-1) =T.INV.2T (1- γ; n-1)

Слайд 23





Example
A random sample of n = 25 has X = 50 and 	
S = 8.  Form 95% confidence interval for μ
degrees of freedom = n – 1 = 24,
  =0,95.
Описание слайда:
Example A random sample of n = 25 has X = 50 and S = 8. Form 95% confidence interval for μ degrees of freedom = n – 1 = 24,  =0,95.

Слайд 24





To get a t - value use the TINV function. 
To get a t - value use the TINV function. 
The value of  alpha =(1-confidence) and
 n-1 degrees of freedom are the inputs needed. 
 For 95% confidence use alpha =0.05 and for a sample size of 25 use 24 df  
t= TINV(0,05; 24)=2,0639
t= T.INV.2T(0,05;24)= 2,0639
Описание слайда:
To get a t - value use the TINV function. To get a t - value use the TINV function. The value of alpha =(1-confidence) and n-1 degrees of freedom are the inputs needed. For 95% confidence use alpha =0.05 and for a sample size of 25 use 24 df t= TINV(0,05; 24)=2,0639 t= T.INV.2T(0,05;24)= 2,0639

Слайд 25


Confidence interval estimation, слайд №25
Описание слайда:

Слайд 26





Confidence Interval on the Variance and Standard Deviation of a Normal Distribution
Описание слайда:
Confidence Interval on the Variance and Standard Deviation of a Normal Distribution

Слайд 27





Confidence Interval on the Variance and Standard Deviation of a Normal Distribution
Описание слайда:
Confidence Interval on the Variance and Standard Deviation of a Normal Distribution

Слайд 28


Confidence interval estimation, слайд №28
Описание слайда:

Слайд 29





Confidence Interval on the Variance and Standard Deviation of a Normal Distribution
Описание слайда:
Confidence Interval on the Variance and Standard Deviation of a Normal Distribution

Слайд 30


Confidence interval estimation, слайд №30
Описание слайда:

Слайд 31






We can use 2 –Table for solving next equation 
Or EXCEL function     CHIINV (q;  n-1),
=CHISQ.INV.RT(q;n-1).
Описание слайда:
We can use 2 –Table for solving next equation Or EXCEL function CHIINV (q; n-1), =CHISQ.INV.RT(q;n-1).

Слайд 32





EXAMPLE
According to the 20 measurements found standard deviation S = 0,12. Find precision measurements with reliability 0.98.
Описание слайда:
EXAMPLE According to the 20 measurements found standard deviation S = 0,12. Find precision measurements with reliability 0.98.

Слайд 33





With using CHIINV (q;  n-1) we obtain 12 і 22 . 
With using CHIINV (q;  n-1) we obtain 12 і 22 . 
For degrees of freedom n - 1=19 and probability α2=(1-0,98)/2=0,01 define 
 22 =36,2,
 after that for n - 1=19 and probability α1=(1+0,98)/2=0,99 define 12 =7,63. 
22 = CHIINV(0,01; 19)=36,2 ; =CHISQ.INV.RT(0,01;19). 
12 = CHIINV(0,99;19)=7,63.
=CHISQ.INV.RT(0,01;19).
Описание слайда:
With using CHIINV (q; n-1) we obtain 12 і 22 . With using CHIINV (q; n-1) we obtain 12 і 22 . For degrees of freedom n - 1=19 and probability α2=(1-0,98)/2=0,01 define 22 =36,2, after that for n - 1=19 and probability α1=(1+0,98)/2=0,99 define 12 =7,63. 22 = CHIINV(0,01; 19)=36,2 ; =CHISQ.INV.RT(0,01;19). 12 = CHIINV(0,99;19)=7,63. =CHISQ.INV.RT(0,01;19).

Слайд 34






calculate
Confidence Interval for σ is (0,09;0,19).
Описание слайда:
calculate Confidence Interval for σ is (0,09;0,19).



Похожие презентации
Mypresentation.ru
Загрузить презентацию