🗊Презентация Mathematical Induction

Категория: Математика
Нажмите для полного просмотра!
Mathematical Induction, слайд №1Mathematical Induction, слайд №2Mathematical Induction, слайд №3Mathematical Induction, слайд №4Mathematical Induction, слайд №5Mathematical Induction, слайд №6Mathematical Induction, слайд №7Mathematical Induction, слайд №8Mathematical Induction, слайд №9Mathematical Induction, слайд №10Mathematical Induction, слайд №11Mathematical Induction, слайд №12Mathematical Induction, слайд №13Mathematical Induction, слайд №14Mathematical Induction, слайд №15Mathematical Induction, слайд №16Mathematical Induction, слайд №17Mathematical Induction, слайд №18Mathematical Induction, слайд №19Mathematical Induction, слайд №20

Вы можете ознакомиться и скачать презентацию на тему Mathematical Induction. Доклад-сообщение содержит 20 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1


Mathematical Induction, слайд №1
Описание слайда:

Слайд 2





Question 0. A continuous function f is defined on the interval [−1,1], and f 2(x) = x 2 for each x from the interval [−1,1]. 
Question 0. A continuous function f is defined on the interval [−1,1], and f 2(x) = x 2 for each x from the interval [−1,1].
Описание слайда:
Question 0. A continuous function f is defined on the interval [−1,1], and f 2(x) = x 2 for each x from the interval [−1,1]. Question 0. A continuous function f is defined on the interval [−1,1], and f 2(x) = x 2 for each x from the interval [−1,1].

Слайд 3





Question 0+. A function f is defined on the interval [−1,1], and f 2(x) = x 2 for each x from the interval [−1,1]. 
Question 0+. A function f is defined on the interval [−1,1], and f 2(x) = x 2 for each x from the interval [−1,1].
Описание слайда:
Question 0+. A function f is defined on the interval [−1,1], and f 2(x) = x 2 for each x from the interval [−1,1]. Question 0+. A function f is defined on the interval [−1,1], and f 2(x) = x 2 for each x from the interval [−1,1].

Слайд 4





Mathematical Induction
Let Sn, n = 1,2,3,… be statements involving positive integer numbers n.
Suppose that
	1. S1 is true. 
	2. If Sk is true, then Sk +1 is also true.
Описание слайда:
Mathematical Induction Let Sn, n = 1,2,3,… be statements involving positive integer numbers n. Suppose that 1. S1 is true. 2. If Sk is true, then Sk +1 is also true.

Слайд 5





Question 1. Using the Principle of Mathematical Induction show that
Question 1. Using the Principle of Mathematical Induction show that
Описание слайда:
Question 1. Using the Principle of Mathematical Induction show that Question 1. Using the Principle of Mathematical Induction show that

Слайд 6


Mathematical Induction, слайд №6
Описание слайда:

Слайд 7


Mathematical Induction, слайд №7
Описание слайда:

Слайд 8


Mathematical Induction, слайд №8
Описание слайда:

Слайд 9





Question 1b. Using the Principle of Mathematical Induction show that
Question 1b. Using the Principle of Mathematical Induction show that
Описание слайда:
Question 1b. Using the Principle of Mathematical Induction show that Question 1b. Using the Principle of Mathematical Induction show that

Слайд 10


Mathematical Induction, слайд №10
Описание слайда:

Слайд 11





Question 3a. Calculate the following sum
Question 3a. Calculate the following sum
Описание слайда:
Question 3a. Calculate the following sum Question 3a. Calculate the following sum

Слайд 12





Question 5. Using the formula for the derivative of inverse function derive explicit formulae for the derivatives of arcsin x, arccos x, arctan x, and arccot x.
Question 5. Using the formula for the derivative of inverse function derive explicit formulae for the derivatives of arcsin x, arccos x, arctan x, and arccot x.
Описание слайда:
Question 5. Using the formula for the derivative of inverse function derive explicit formulae for the derivatives of arcsin x, arccos x, arctan x, and arccot x. Question 5. Using the formula for the derivative of inverse function derive explicit formulae for the derivatives of arcsin x, arccos x, arctan x, and arccot x.

Слайд 13


Mathematical Induction, слайд №13
Описание слайда:

Слайд 14





Question 6. Use the Cauchy criterion to show
Question 6. Use the Cauchy criterion to show
Описание слайда:
Question 6. Use the Cauchy criterion to show Question 6. Use the Cauchy criterion to show

Слайд 15


Mathematical Induction, слайд №15
Описание слайда:

Слайд 16





Picture of the Week
Описание слайда:
Picture of the Week

Слайд 17





Question 4. Let f (x) be a differentiable function such that the derivative 	   is a continuous function and f (f (x)) = x for any x. Furthermore, let f (0) = 1, and f (1) = 0.
Question 4. Let f (x) be a differentiable function such that the derivative 	   is a continuous function and f (f (x)) = x for any x. Furthermore, let f (0) = 1, and f (1) = 0.
a) Is it possible that there exists a number a such that
Описание слайда:
Question 4. Let f (x) be a differentiable function such that the derivative is a continuous function and f (f (x)) = x for any x. Furthermore, let f (0) = 1, and f (1) = 0. Question 4. Let f (x) be a differentiable function such that the derivative is a continuous function and f (f (x)) = x for any x. Furthermore, let f (0) = 1, and f (1) = 0. a) Is it possible that there exists a number a such that

Слайд 18





b) Is it possible that there exists a number a such that
b) Is it possible that there exists a number a such that
Описание слайда:
b) Is it possible that there exists a number a such that b) Is it possible that there exists a number a such that

Слайд 19





c) Let x1 be a solution of the equation f (x) = x. Find 
c) Let x1 be a solution of the equation f (x) = x. Find
Описание слайда:
c) Let x1 be a solution of the equation f (x) = x. Find c) Let x1 be a solution of the equation f (x) = x. Find

Слайд 20


Mathematical Induction, слайд №20
Описание слайда:



Похожие презентации
Mypresentation.ru
Загрузить презентацию