🗊Презентация Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation

Категория: Математика
Нажмите для полного просмотра!
Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №1Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №2Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №3Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №4Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №5Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №6Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №7Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №8Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №9Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №10Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №11Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №12Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №13Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №14Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №15Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №16Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №17Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №18Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №19Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №20Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №21Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №22Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №23Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №24Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №25Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №26Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №27Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №28Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №29Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №30Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №31Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №32Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №33Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №34Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №35Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №36Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №37Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №38Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №39Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №40Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №41Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №42Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №43Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №44Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №45Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №46Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №47Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №48Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №49Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №50Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №51Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №52Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №53Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №54Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №55Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №56Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №57Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №58Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №59Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №60Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №61Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №62Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №63Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №64Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №65

Содержание

Вы можете ознакомиться и скачать презентацию на тему Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation. Доклад-сообщение содержит 65 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Mathematics for Computing
2016-2017
Описание слайда:
Mathematics for Computing 2016-2017

Слайд 2





Topics 2016-17
Number Representation
Logarithms
Logic
Set Theory
Relations & Functions
Graph Theory
Описание слайда:
Topics 2016-17 Number Representation Logarithms Logic Set Theory Relations & Functions Graph Theory

Слайд 3





Assessment
In Class Test (Partway through term, 31/10) 
(20% of marks)
‘Homework’ (3 parts for 10% of marks)
Two hour unseen examination in May/June 2017
(70% of marks)
Описание слайда:
Assessment In Class Test (Partway through term, 31/10) (20% of marks) ‘Homework’ (3 parts for 10% of marks) Two hour unseen examination in May/June 2017 (70% of marks)

Слайд 4





Lecture / tutorial plans
Lecture every week 18:00 for 18:10 start. 1 – 2½ hours (with break)
Tutorials (problems and answers) one week in two (~1½ hours)
Compulsory In-Class Test, October 31st
Lecture Notes etc. will appear on Moodle
Class split in two rooms
Описание слайда:
Lecture / tutorial plans Lecture every week 18:00 for 18:10 start. 1 – 2½ hours (with break) Tutorials (problems and answers) one week in two (~1½ hours) Compulsory In-Class Test, October 31st Lecture Notes etc. will appear on Moodle Class split in two rooms

Слайд 5





Provisional Timetable
Описание слайда:
Provisional Timetable

Слайд 6





Course Textbook
Schaum’s Outlines Series
Essential Computer Mathematics
Author: Seymour Lipschutz
ISBN 0-07-037990-4
Описание слайда:
Course Textbook Schaum’s Outlines Series Essential Computer Mathematics Author: Seymour Lipschutz ISBN 0-07-037990-4

Слайд 7





Maths Support	
http://www.bbk.ac.uk/business/current-students/learning-co-ordinators/eva-szatmari
See separate powerpoint file.
Описание слайда:
Maths Support http://www.bbk.ac.uk/business/current-students/learning-co-ordinators/eva-szatmari See separate powerpoint file.

Слайд 8





Lecture 1
Rule 1
Communication is not easy, 
How do you tell a computer what to do?
Описание слайда:
Lecture 1 Rule 1 Communication is not easy, How do you tell a computer what to do?

Слайд 9





Welcome
Rule 1
We want to get the computer to do NEW complicated things
We start by learning the basics of its language, Numerical Representation, Logic …
Описание слайда:
Welcome Rule 1 We want to get the computer to do NEW complicated things We start by learning the basics of its language, Numerical Representation, Logic …

Слайд 10





Memory for numbers
We don’t know how our memory stores numbers 
We know how a computer does (we designed it)
Full glass is 1, empty is 0
Описание слайда:
Memory for numbers We don’t know how our memory stores numbers We know how a computer does (we designed it) Full glass is 1, empty is 0

Слайд 11





Great, we know how to store 1 and 0 in the computer memory 
Great, we know how to store 1 and 0 in the computer memory 
How do we store 0,1,2,3?
We use two cups!
Описание слайда:
Great, we know how to store 1 and 0 in the computer memory Great, we know how to store 1 and 0 in the computer memory How do we store 0,1,2,3? We use two cups!

Слайд 12





If we want extra numbers we add an extra cup!
If we want extra numbers we add an extra cup!
Each cup we add doubles the number of values we can store
Описание слайда:
If we want extra numbers we add an extra cup! If we want extra numbers we add an extra cup! Each cup we add doubles the number of values we can store

Слайд 13





We don’t need the cups now.
We don’t need the cups now.
Let’s understand how this works
We shall look for repetitive patterns and see what they mean
Описание слайда:
We don’t need the cups now. We don’t need the cups now. Let’s understand how this works We shall look for repetitive patterns and see what they mean

Слайд 14


Mathematics for Computing 2016-2017. Lecture 1: Course Introduction and Numerical Representation, слайд №14
Описание слайда:

Слайд 15





Convert from Binary to Decimal
When we translate from the binary base (base 2) the decimal base (base 10 – ten fingers)
The first binary digit tells us whether to add 1
The second binary digit tells us whether to add 2
The third binary digit tells us whether to add 4
The fourth binary digit tells us whether to add ??
Описание слайда:
Convert from Binary to Decimal When we translate from the binary base (base 2) the decimal base (base 10 – ten fingers) The first binary digit tells us whether to add 1 The second binary digit tells us whether to add 2 The third binary digit tells us whether to add 4 The fourth binary digit tells us whether to add ??

Слайд 16





Convert from Binary to Decimal
When we translate from the binary base to the decimal base
The first binary digit tells us whether to add 1
Every digit afterwards tells us whether to add exactly two times as much a the previous digit
Lets try this out
Описание слайда:
Convert from Binary to Decimal When we translate from the binary base to the decimal base The first binary digit tells us whether to add 1 Every digit afterwards tells us whether to add exactly two times as much a the previous digit Lets try this out

Слайд 17





The binary system (computer)
The way the computer stores numbers
Base 2
Digits 0 and 1
Example:
110110112
            
msd       lsd
(most significant digit)    (least significant digit)
Описание слайда:
The binary system (computer) The way the computer stores numbers Base 2 Digits 0 and 1 Example: 110110112   msd lsd (most significant digit) (least significant digit)

Слайд 18





The decimal system (ours)
Probably because we started counting with our fingers
Base 10
Digits 0,1,2,3,4,5,6,7,8,9
Example:
7641321910
            
msd       lsd
Описание слайда:
The decimal system (ours) Probably because we started counting with our fingers Base 10 Digits 0,1,2,3,4,5,6,7,8,9 Example: 7641321910   msd lsd

Слайд 19





Significant Figures
Significant Figures:
Important in science for precision of measurements.
All non-zero digits are significant
Leading zeros are not significant
e.g.  = 3.14 (to 3 s.f.) = 3.142 (to 4 s.f.) = 3.1416 (to 5 s.f.)
Описание слайда:
Significant Figures Significant Figures: Important in science for precision of measurements. All non-zero digits are significant Leading zeros are not significant e.g.  = 3.14 (to 3 s.f.) = 3.142 (to 4 s.f.) = 3.1416 (to 5 s.f.)

Слайд 20





Some binary numbers!!!
Описание слайда:
Some binary numbers!!!

Слайд 21





Convert from Binary to Decimal
Lets make this more mathematical, 
We now use powers of 2 to represent 1,2,4,8,…
Note that the power is the index of the digit, when the indices start from 0 (first index is 0) 
(digit with index 6 corresponds to 26)
Описание слайда:
Convert from Binary to Decimal Lets make this more mathematical, We now use powers of 2 to represent 1,2,4,8,… Note that the power is the index of the digit, when the indices start from 0 (first index is 0) (digit with index 6 corresponds to 26)

Слайд 22





Convert from Binary to Decimal
Example of how to use what we learned to convert from binary to decimal
Описание слайда:
Convert from Binary to Decimal Example of how to use what we learned to convert from binary to decimal

Слайд 23





Idea for Converting Decimal to Binary 
Digit at position 0 is easy.
It is 1 if the number is even and 0 otherwise
Why?
In a binary number only the least significant digit (20=1)
Описание слайда:
Idea for Converting Decimal to Binary Digit at position 0 is easy. It is 1 if the number is even and 0 otherwise Why? In a binary number only the least significant digit (20=1)

Слайд 24





Convert from Decimal to Binary
Описание слайда:
Convert from Decimal to Binary

Слайд 25





What Happens when we Convert from Decimal to Binary
Описание слайда:
What Happens when we Convert from Decimal to Binary

Слайд 26





Decimal to Binary conversion Algorithmically:
Natural Numbers
1. 	Input n (natural no.)
2. 	Repeat 
	2.1.	Output n mod 2
	2.2.	n  n div 2
	until n = 0
Описание слайда:
Decimal to Binary conversion Algorithmically: Natural Numbers 1. Input n (natural no.) 2. Repeat 2.1. Output n mod 2 2.2. n  n div 2 until n = 0

Слайд 27





Convert from Decimal to Binary
Описание слайда:
Convert from Decimal to Binary

Слайд 28





Numbers we can already represent
Natural numbers: 1, 2, 3, 4, …
Alternative versions of the number six 
Decimal: 6
Alphabetically: six
Roman: VI 
Tallying:
Описание слайда:
Numbers we can already represent Natural numbers: 1, 2, 3, 4, … Alternative versions of the number six Decimal: 6 Alphabetically: six Roman: VI Tallying:

Слайд 29





What’s still missing
Fractional numbers (real numbers)
Versions of one and a quarter 
Mixed number: 1¼, 
Improper fraction: 5/4, 
Decimal: 1.25
Описание слайда:
What’s still missing Fractional numbers (real numbers) Versions of one and a quarter Mixed number: 1¼, Improper fraction: 5/4, Decimal: 1.25

Слайд 30





Decimal numbers (base 10)
String of digits
- symbol for negative numbers
Decimal point
A positional number system, with the index giving the ‘value’ of each position.
Example: 
3583.102 = 3 x 103 + 5 x 102 + 8 x 101 + 
3 x 100 + 1 x 10-1 + 0 x 10-2 + 2 x 10-3
Описание слайда:
Decimal numbers (base 10) String of digits - symbol for negative numbers Decimal point A positional number system, with the index giving the ‘value’ of each position. Example: 3583.102 = 3 x 103 + 5 x 102 + 8 x 101 + 3 x 100 + 1 x 10-1 + 0 x 10-2 + 2 x 10-3

Слайд 31





Representing Decimal numbers in Binary
We can use two binary numbers to represent a fraction by letting the first number be the enumerator and the other be denominator
Problem: we want operation such as addition and subtraction to execute fast. This representation is not optimal.
Описание слайда:
Representing Decimal numbers in Binary We can use two binary numbers to represent a fraction by letting the first number be the enumerator and the other be denominator Problem: we want operation such as addition and subtraction to execute fast. This representation is not optimal.

Слайд 32





Representing Fractions in Binary
Use a decimal point like in decimal numbers
There are two binary numbers the first is the number before the (radix) point and the other after the point
Описание слайда:
Representing Fractions in Binary Use a decimal point like in decimal numbers There are two binary numbers the first is the number before the (radix) point and the other after the point

Слайд 33





Representing decimal numbers in binary
Описание слайда:
Representing decimal numbers in binary

Слайд 34





Convert fractional part from Decimal to Binary
To convert the decimal part:
Описание слайда:
Convert fractional part from Decimal to Binary To convert the decimal part:

Слайд 35





Negative numbers
First bit (MSB) is the sign bit
If it is 0 the number is positive
If it is 1 the number is negative
Goal when definition was chosen:
Maximize use of memory
Make computation easy
Описание слайда:
Negative numbers First bit (MSB) is the sign bit If it is 0 the number is positive If it is 1 the number is negative Goal when definition was chosen: Maximize use of memory Make computation easy

Слайд 36





Negative Numbers – 
Calculate two’s Complement
The generate two’s complement
Write out the positive version of number,
Write complement of each bit 
(0 becomes 1 and 1 becomes 0)
Add 1
The result is the two’s complement and the negative version of the number
Описание слайда:
Negative Numbers – Calculate two’s Complement The generate two’s complement Write out the positive version of number, Write complement of each bit (0 becomes 1 and 1 becomes 0) Add 1 The result is the two’s complement and the negative version of the number

Слайд 37





Negative Numbers – 
Two’s Complement (examples)
3bit	8bit
011 310	00011101 2910	number
100	11100010 	complement
+
001	00000001 	+1
===	========
101 -310	11100011 -2910  2’s complement
Описание слайда:
Negative Numbers – Two’s Complement (examples) 3bit 8bit 011 310 00011101 2910 number 100 11100010 complement + 001 00000001 +1 === ======== 101 -310 11100011 -2910 2’s complement

Слайд 38





Negative numbers – Two’s Complement(3 bits)
First bit (MSB) is the sign bit
If it is 0 the number is positive
If it is 1 the number is negative
Goal when definition was chosen:
Maximize use of memory
Make computation easy
Описание слайда:
Negative numbers – Two’s Complement(3 bits) First bit (MSB) is the sign bit If it is 0 the number is positive If it is 1 the number is negative Goal when definition was chosen: Maximize use of memory Make computation easy

Слайд 39





Negative numbers – Two’s Complement (4 bits)
Описание слайда:
Negative numbers – Two’s Complement (4 bits)

Слайд 40





Computer representation
Fixed length
Integers 
Real
Sign
Описание слайда:
Computer representation Fixed length Integers Real Sign

Слайд 41





Bits, bytes, words
Bit: a single binary digit
Byte: eight bits
Word: Depends!!!
Long Word: two words
Описание слайда:
Bits, bytes, words Bit: a single binary digit Byte: eight bits Word: Depends!!! Long Word: two words

Слайд 42





Integers
A two byte integer
16 bits
216 possibilities  65536
-32768  n  32767 or 0  n  65535
Описание слайда:
Integers A two byte integer 16 bits 216 possibilities  65536 -32768  n  32767 or 0  n  65535

Слайд 43





Signed integers
Описание слайда:
Signed integers

Слайд 44





Real numbers
‘Human’ form: 4563.2835
Exponential form: 0.45632835 x 104 

General form: m x be
Normalised binary exponential form: m x 2e
Описание слайда:
Real numbers ‘Human’ form: 4563.2835 Exponential form: 0.45632835 x 104 General form: m x be Normalised binary exponential form: m x 2e

Слайд 45





Real numbers
Conversion from Human to Exponential and back
655.54  = 0. 65554 * 103
0.000545346 = 0. 545346 *10-3
0.523432 * 105 = 52343.2
0.7983476 * 10-4 = 0.00007983476
Описание слайда:
Real numbers Conversion from Human to Exponential and back 655.54 = 0. 65554 * 103 0.000545346 = 0. 545346 *10-3 0.523432 * 105 = 52343.2 0.7983476 * 10-4 = 0.00007983476

Слайд 46





Real numbers 2
For a 32 bit real number
Sign, 1 bit
Significand, 23 bits
Exponent, 8 bits
Описание слайда:
Real numbers 2 For a 32 bit real number Sign, 1 bit Significand, 23 bits Exponent, 8 bits

Слайд 47





Types of numbers
Integers: …, -3, -2, -1, 0, 1, 2, 3, …
Rational numbers: m/n,   where m and n are integers and n  0.
Examples: ½, 5/3, ¼ = 0.25 1/3 = 0.3333…
Irrational numbers, 
examples: 2  1.414,   22/7  3.14159
e  2.718.
Описание слайда:
Types of numbers Integers: …, -3, -2, -1, 0, 1, 2, 3, … Rational numbers: m/n, where m and n are integers and n  0. Examples: ½, 5/3, ¼ = 0.25 1/3 = 0.3333… Irrational numbers, examples: 2  1.414,   22/7  3.14159 e  2.718.

Слайд 48





Other representations
Base Index form
Number = baseindex
e.g. 100 = 102
Percentage form
Percentage = number/100
e.g. 	45% = 45/100 = 0.45
		20% = 20/100 = 0.2
		110% = 110/100 = 1.1
Описание слайда:
Other representations Base Index form Number = baseindex e.g. 100 = 102 Percentage form Percentage = number/100 e.g. 45% = 45/100 = 0.45 20% = 20/100 = 0.2 110% = 110/100 = 1.1

Слайд 49





Other number systems
Bases can be any natural number except 1.

Common examples are :
Binary (base 2)
Octal (base 8)
Hexadecimal (base 16)
We’ll show what to do with base 5 and 7 and then deal with the octal and hexadecimal bases
Описание слайда:
Other number systems Bases can be any natural number except 1. Common examples are : Binary (base 2) Octal (base 8) Hexadecimal (base 16) We’ll show what to do with base 5 and 7 and then deal with the octal and hexadecimal bases

Слайд 50





Convert from Decimal to Base 7
Описание слайда:
Convert from Decimal to Base 7

Слайд 51





Convert from Base 7 to Decimal
Описание слайда:
Convert from Base 7 to Decimal

Слайд 52





Convert from Decimal to Base 5 and back
Описание слайда:
Convert from Decimal to Base 5 and back

Слайд 53





Octal
Base eight
Digits 0,1,2,3,4,5,6,7
Example: 1210 = 148 = 11002
100110111102 Binary
Описание слайда:
Octal Base eight Digits 0,1,2,3,4,5,6,7 Example: 1210 = 148 = 11002 100110111102 Binary

Слайд 54





Convert from Binary to Octal and back
Описание слайда:
Convert from Binary to Octal and back

Слайд 55





Hexadecimal
Base sixteen
Digits 0,1,2,3,4,5,6,7,8,9,A(10), B(11), C(12),D(13),E(14),F(15).
Example B316 = 17910 = 101100112
110101012 Binary
Описание слайда:
Hexadecimal Base sixteen Digits 0,1,2,3,4,5,6,7,8,9,A(10), B(11), C(12),D(13),E(14),F(15). Example B316 = 17910 = 101100112 110101012 Binary

Слайд 56





Convert from Binary to Hexadecimal and back
Описание слайда:
Convert from Binary to Hexadecimal and back

Слайд 57





Writing down the hexadecimal conversion table
Описание слайда:
Writing down the hexadecimal conversion table

Слайд 58





Extra Slides
1  0  1  0  0  1  1
+1  1  1  0  1  1  1
Описание слайда:
Extra Slides 1 0 1 0 0 1 1 +1 1 1 0 1 1 1

Слайд 59





End of Lecture
Описание слайда:
End of Lecture

Слайд 60





Extra Slides
The following slides present the same information already appearing in other slides, in a different manner.
Описание слайда:
Extra Slides The following slides present the same information already appearing in other slides, in a different manner.

Слайд 61





Decimal to Binary conversion 1:
Mathematical Operations
n div 2 is the quotient.
n mod 2 is the remainder.
For example: 	
14 div 2 = 7, 14 mod 2 = 0
17 div 2 = 8, 17 mod 2 = 1
Описание слайда:
Decimal to Binary conversion 1: Mathematical Operations n div 2 is the quotient. n mod 2 is the remainder. For example: 14 div 2 = 7, 14 mod 2 = 0 17 div 2 = 8, 17 mod 2 = 1

Слайд 62





Decimal to Binary conversion 2:
Natural Numbers
1. 	Input n (natural no.)
2. 	Repeat 
	2.1.	Output n mod 2
	2.2.	n  n div 2
	until n = 0
Описание слайда:
Decimal to Binary conversion 2: Natural Numbers 1. Input n (natural no.) 2. Repeat 2.1. Output n mod 2 2.2. n  n div 2 until n = 0

Слайд 63





Decimal to Binary conversion 3:
Fractional Numbers
1. 	Input n 
2. 	Repeat 
	2.1.	m  2n 
	2.2.	Output m 
	2.3. 	n  frac(m)
	until n = 0
m  is the integer part of m
frac(m) is the fraction part.
Описание слайда:
Decimal to Binary conversion 3: Fractional Numbers 1. Input n 2. Repeat 2.1. m  2n 2.2. Output m  2.3. n  frac(m) until n = 0 m  is the integer part of m frac(m) is the fraction part.

Слайд 64





Some hexadecimal (and binary) numbers!!!
Описание слайда:
Some hexadecimal (and binary) numbers!!!

Слайд 65





End
Описание слайда:
End



Похожие презентации
Mypresentation.ru
Загрузить презентацию