🗊Презентация The Taylor Formula

Категория: Математика
Нажмите для полного просмотра!
The Taylor Formula, слайд №1The Taylor Formula, слайд №2The Taylor Formula, слайд №3The Taylor Formula, слайд №4The Taylor Formula, слайд №5The Taylor Formula, слайд №6The Taylor Formula, слайд №7The Taylor Formula, слайд №8The Taylor Formula, слайд №9The Taylor Formula, слайд №10The Taylor Formula, слайд №11The Taylor Formula, слайд №12The Taylor Formula, слайд №13The Taylor Formula, слайд №14The Taylor Formula, слайд №15The Taylor Formula, слайд №16The Taylor Formula, слайд №17The Taylor Formula, слайд №18The Taylor Formula, слайд №19The Taylor Formula, слайд №20The Taylor Formula, слайд №21The Taylor Formula, слайд №22The Taylor Formula, слайд №23The Taylor Formula, слайд №24The Taylor Formula, слайд №25The Taylor Formula, слайд №26The Taylor Formula, слайд №27The Taylor Formula, слайд №28

Вы можете ознакомиться и скачать презентацию на тему The Taylor Formula. Доклад-сообщение содержит 28 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1


The Taylor Formula, слайд №1
Описание слайда:

Слайд 2





The Taylor Formula
Описание слайда:
The Taylor Formula

Слайд 3





Question 1. If
Question 1. If
Описание слайда:
Question 1. If Question 1. If

Слайд 4


The Taylor Formula, слайд №4
Описание слайда:

Слайд 5


The Taylor Formula, слайд №5
Описание слайда:

Слайд 6


The Taylor Formula, слайд №6
Описание слайда:

Слайд 7





Question 1. What is the greatest value of b for which any function f  that satisfies the properties (i), (ii), and (iii) must also satisfy f (1) < 5?
Question 1. What is the greatest value of b for which any function f  that satisfies the properties (i), (ii), and (iii) must also satisfy f (1) < 5?
  (i) f (x) is infinitely differentiable for all x;
 (ii) f (0) = 1, 		 and
(iii) 			  for all
Описание слайда:
Question 1. What is the greatest value of b for which any function f that satisfies the properties (i), (ii), and (iii) must also satisfy f (1) < 5? Question 1. What is the greatest value of b for which any function f that satisfies the properties (i), (ii), and (iii) must also satisfy f (1) < 5? (i) f (x) is infinitely differentiable for all x; (ii) f (0) = 1, and (iii) for all

Слайд 8


The Taylor Formula, слайд №8
Описание слайда:

Слайд 9


The Taylor Formula, слайд №9
Описание слайда:

Слайд 10





Question 2. Use the Taylor formula to show that e is irrational.
Question 2. Use the Taylor formula to show that e is irrational.
Описание слайда:
Question 2. Use the Taylor formula to show that e is irrational. Question 2. Use the Taylor formula to show that e is irrational.

Слайд 11


The Taylor Formula, слайд №11
Описание слайда:

Слайд 12





Question 3. Find
Question 3. Find
Описание слайда:
Question 3. Find Question 3. Find

Слайд 13


The Taylor Formula, слайд №13
Описание слайда:

Слайд 14


The Taylor Formula, слайд №14
Описание слайда:

Слайд 15


The Taylor Formula, слайд №15
Описание слайда:

Слайд 16





Example. The geometric series  
Example. The geometric series
Описание слайда:
Example. The geometric series Example. The geometric series

Слайд 17


The Taylor Formula, слайд №17
Описание слайда:

Слайд 18


The Taylor Formula, слайд №18
Описание слайда:

Слайд 19





Question 5. Which of the following series converge?  
Question 5. Which of the following series converge?
Описание слайда:
Question 5. Which of the following series converge? Question 5. Which of the following series converge?

Слайд 20


The Taylor Formula, слайд №20
Описание слайда:

Слайд 21


The Taylor Formula, слайд №21
Описание слайда:

Слайд 22





Question 5. A certain ball has the property that each time it falls from a height h onto a hard, level surface, it rebounds to a height rh, where 0 < r < 1.
Question 5. A certain ball has the property that each time it falls from a height h onto a hard, level surface, it rebounds to a height rh, where 0 < r < 1.
Suppose that the ball is dropped from an initial height of H meters.
a) Assuming that the ball continues to bounce indefinitely, find the total distance that it travels.
Описание слайда:
Question 5. A certain ball has the property that each time it falls from a height h onto a hard, level surface, it rebounds to a height rh, where 0 < r < 1. Question 5. A certain ball has the property that each time it falls from a height h onto a hard, level surface, it rebounds to a height rh, where 0 < r < 1. Suppose that the ball is dropped from an initial height of H meters. a) Assuming that the ball continues to bounce indefinitely, find the total distance that it travels.

Слайд 23





A bouncing ball – total distance travelled
A bouncing ball – total distance travelled
Описание слайда:
A bouncing ball – total distance travelled A bouncing ball – total distance travelled

Слайд 24





Question 7. A certain ball has the property that each time it falls from a height h onto a hard, level surface, it rebounds to a height   r h, where 0 < r < 1.
Question 7. A certain ball has the property that each time it falls from a height h onto a hard, level surface, it rebounds to a height   r h, where 0 < r < 1.
Suppose that the ball is dropped from an initial height of H meters.
b) Calculate the total time that the ball spends bouncing.
Hint: A ball having zero velocity falls ½ gt2 meters in t seconds.
Описание слайда:
Question 7. A certain ball has the property that each time it falls from a height h onto a hard, level surface, it rebounds to a height r h, where 0 < r < 1. Question 7. A certain ball has the property that each time it falls from a height h onto a hard, level surface, it rebounds to a height r h, where 0 < r < 1. Suppose that the ball is dropped from an initial height of H meters. b) Calculate the total time that the ball spends bouncing. Hint: A ball having zero velocity falls ½ gt2 meters in t seconds.

Слайд 25





A bouncing ball – total bouncing time
A bouncing ball – total bouncing time
Описание слайда:
A bouncing ball – total bouncing time A bouncing ball – total bouncing time

Слайд 26


The Taylor Formula, слайд №26
Описание слайда:

Слайд 27





Question 7. c) Suppose that each time the ball strikes the surface with velocity v, it rebounds with velocity – kv, where 0 < k < 1.
Question 7. c) Suppose that each time the ball strikes the surface with velocity v, it rebounds with velocity – kv, where 0 < k < 1.
How long will it take for the ball to come to rest?
Описание слайда:
Question 7. c) Suppose that each time the ball strikes the surface with velocity v, it rebounds with velocity – kv, where 0 < k < 1. Question 7. c) Suppose that each time the ball strikes the surface with velocity v, it rebounds with velocity – kv, where 0 < k < 1. How long will it take for the ball to come to rest?

Слайд 28


The Taylor Formula, слайд №28
Описание слайда:



Теги The Taylor Formula
Похожие презентации
Mypresentation.ru
Загрузить презентацию